
ConsenSys / aragon-daotemplates-audit-report-2019-08

 1 star 1 fork

Code Issues Pull requests Actions Projects Wiki Security Insigh

aragon-daotemplates-audit-report-2019-08 / README.md

tintinweb publish final report History

 1 contributor

 Star Watch

 master

Aragon DAO Templates Audit
1 Summary
2 Audit Scope

2.1 Out of Scope
3 System Overview

3.1 Detailed Design
4 Key Observations/Recommendations
5 Security Specification

5.1 DAO Templates
6 Issues

6.1 Company-Board - Kernel.APP_MANAGER permission should be ruled by Shareholders
instead of Board members
6.2 Inconsistent Permission Specification DISABLE_PAYMENTS
6.3 Company-Board - Inconsistent permissions in Agent application
6.4 Company-Board - Inconsistent permissions in Finance application
6.5 Payroll is missing permissions to create payments on Finance
6.6 Reputation - Missing data location for argument
6.7 Specification Inconsistencies
6.8 Input Validation - aragonId should be checked for empty string
6.9 Company, Reputation, Membership - Code Duplications

943 lines (592 sloc) 64.8 KB

https://github.com/ConsenSys
https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08
https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/stargazers
https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/network/members
https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08
https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/issues
https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/pulls
https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/actions
https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/projects
https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/wiki
https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/security
https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/pulse
https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08
https://github.com/tintinweb
https://github.com/tintinweb
https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/commit/9d8094a02232a98df6e40c20735d16ecf540623f
https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/commits/master/README.md
https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/static-content/diligence.png

7 Tool-Based Analysis
7.1 MythX
7.2 Ethlint
7.3 Surya

Appendix 1 - Disclosure

1 Summary

ConsenSys Diligence conducted a security audit on the Aragon 0.8 DAO Templates.

Project Name: Aragon dao-templates v0.8
Client Name: Aragon
Client Contact: Louis Giraux (association@aragon.org), Brett Sun
Lead Auditor: Martin Ortner
Co-auditors: Sergii Kravchenko
Date: 23 Aug 2019
Duration: 1 week

2 Audit Scope

This audit covered the following files:

Client's priority for the agreed duration of the audit (in order):

High Priority
Company

File Name SHA-1 Hash

shared/contracts/BaseTemplate.sol a085e3acea08f4ba74f1f6afbbd000

shared/contracts/TokenCache.sol e93cbe72cf6f804e436889f1fa4add

templates/bare/contracts/BareTemplate.sol 7f02ee0a1af3e8d9089a71eb782ef

templates/company-
board/contracts/CompanyBoardTemplate.sol

8af07ce7ff299b48c89fdf165cd8efa

templates/company/contracts/CompanyTemplate.sol 6a34bac42ea02ee4abbfdcbf0437e

templates/membership/contracts/MembershipTemplate.sol eaebf63b173efdbc8252318cbd2a2

templates/reputation/contracts/ReputationTemplate.sol 9ff127c82c20cb087a66a41eba5c0

templates/trust/contracts/MultiSigWallet.sol c2448282059bb320f6ca0fa55f203

templates/trust/contracts/TrustTemplate.sol 8748bf3bb596433517d373176d57

mailto:association@aragon.org

Company-Board
Membership
Reputation

Low Priority (if time permits)
Bare
Trust

2.1 Out of Scope

MulstiSigWallet.sol - was excluded from the audit scope. Nevertheless, the audit team
verified that MultiSigWallet.sol is code-identical to the original gnosis MultiSigWallet
implementation.
TrustTemplate.sol - The Trust DAO template was excluded from scope due to time

constraints and complexity of the templates that would not allow a thorough and responsible
audit result within the time scheduled.
The upgrade to @aragon/apps-agent@2.0.0-rc.1 with aragon/dao-templates#135 is not part
of this audit.

The audit team evaluated that the system is secure, resilient, and working according to its
specifications. The audit activities can be grouped into the following three broad categories:

1. Security: Identifying security related issues within the contract.
2. Architecture: Evaluating the system architecture through the lens of established smart

contract best practices.
3. Code quality: A review of the contract source code. The primary areas of focus include:

Correctness
Readability
Scalability
Code complexity

3 System Overview

Aragon provides so-called DAO Template contracts to support the deployment of Aragon
organizations. The templates model common organizational structures or DAO scenarios. They
aim to provide a way to kickstart an organization and customize it to a client's need. A DAO
Template contract deploys a new DAO, installs applications (e.g. those in aragon-apps) required
for the DAO scenario, initializes and configures them, and defines the trust relationships between
components.

With Aragon 0.8, the following templates are available:

Company
Company-Board
Membership

https://github.com/gnosis/MultiSigWallet/blob/95d51ae89ddec56859720fbb28cfe9d6732a26cf/contracts/MultiSigWallet.sol
https://github.com/aragon/dao-templates/pull/135
https://github.com/aragon/aragon-apps/

Reputation
Trust (not in scope - see Audit Scope)

3.1 Detailed Design

The DAO templates are split into a common part used by many templates which can be found in
the ./shared/ folder and implements functionality that caters to all the scenario-specific
templates. The BaseTemplate defines constants like the aragonPM name hashes of available
applications and provides functionality to deploy a bare DAO, register it on ENS, install
applications, and set-up and transfer permissions. TokenCache provides functionality to cache a
token across DAO creation transactions. Similar functionality exists to cache multiple tokens, apps
or an incomplete DAO set-up where a multi-step deployment is required (company-board and
trust templates). Due to the design of the cache, the two-step deployment allows only one DAO

to be prepared at a time by a deployer.

The following image provides a high-level components centric view on Aragon applications, their
interfaces, the roles they export, and some annotations about who interacts with them.

aragonOS

DAO Application and Permission management

https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/diagrams/apps_overview.png

A new DAO is deployed by creating a new KernelProxy for the DAO Kernel implementation and
setting an initial admin (CREATE_PERMISSIONS_ROLE). The Kernel contains an app mapping,
provides functionality to install apps by deploying app proxies, and implements upgradeability for
both the kernel and apps. Permissions are managed by the ACL subsystem that controls who has
permissions to execute an action in an Aragon application and who can re-grant or revoke that
permission (a permission's "manager").

As outlined in the right part of the diagram, the initial admin may grant Kernel.APP_MANAGER_ROLE
to an account. This account will be allowed to install/update/manage applications for the DAO.
The initial admin may grant or revoke DAO or application specific permissions to an account and
specify an account that acts as the permission manager for the specific role.

Exported permissions:

Kernel.APP_MANAGER_ROLE

ACL.CREATE_PERMISSIONS_ROLE

For reference, ACL provides the following interfaces to manage permissions:

Creates a permission that wasn't previously managed.

function createPermission(address _entity, address _app, bytes32 _role, address

_manager)

Grants permission if allowed. This requires msg.sender to be the permission manager.

function grantPermission(address _entity, address _app, bytes32 _role)

Grants a permission with parameters if allowed. This requires msg.sender to be the
permission manager.

function grantPermissionP(address _entity, address _app, bytes32 _role, uint256[]

_params)

Revokes permission if allowed. This requires msg.sender to be the permission manager.

function revokePermission(address _entity, address _app, bytes32 _role)

Set _newManager as the manager of _role in _app . This requires msg.sender to be the
permission manager.

function setPermissionManager(address _newManager, address _app, bytes32 _role)

Remove the manager of _role in _app . This requires msg.sender to be the permission
manager.

function removePermissionManager(address _app, bytes32 _role)

Burn non-managed _role in _app , so no later modifications can be made (e.g. grant,
revoke, permission manager).

function createBurnedPermission(address _app, bytes32 _role)

Burn _role in _app , so no later modification can be made (e.g. grant, revoke, permission
manager). This requires msg.sender to be the permission manager.

function burnPermissionManager(address _app, bytes32 _role)

Applications

The following applications from aragon-apps are provided to organizations through the
templates.

Agent

An agent allows performing arbitrary calls to contracts and therefore acts as an external interface
of the DAO. It allows the DAO to participate as a stakeholder in other contracts or DAOs. The
agent also implements the Vault application (see below). As outlined in the diagram, roles can be
assigned to any address.

The EXECUTE_ROLE allows an entity to perform arbitrary calls to contract with ETH value transfer
with user provided call-data (execute(target, ethValue, calldata)). The RUN_SCRIPT_ROLE allows
an entity to execute an evmScript by calling forward(evmScript) , which may call arbitrary
addresses depending on the evmscript executor (without ETH value transfer). Both methods allow
an entity owning the permission to call addresses within the DAO or external to the DAO on behalf
of the Agent .

Exported permissions:

Agent.EXECUTE_ROLE

Agent.RUN_SCRIPT_ROLE

Agent.ADD_PRESIGNED_HASH_ROLE

Agent.DESIGNATE_SIGNER_ROLE

With aragon/dao-templates#135 the Agent application will be updated to @aragon/apps-
agent@2.0.0-rc.1 providing new functionality and exporting the following additional permissions:

Agent.SAFE_EXECUTE_ROLE

Agent.ADD_PROTECTED_TOKEN_ROLE

Agent.REMOVE_PROTECTED_TOKEN_ROLE

The SAFE_EXECUTE_ROLE allows an entity to execute a low-level call to an arbitrary address with
call-data and without a value transfer. The method checks that protected tokens cannot be spent.

Please note that the upgrade to @aragon/apps-agent@2.0.0-rc.1 is not part of this audit.

Finance

https://github.com/aragon/aragon-apps/
https://github.com/aragon/dao-templates/pull/135

The finance application is the central point to keep track of income and expenses (ETH or ERC20
tokens). It can be used to create recurring or one-time payments. Finances are accounted in
configurable financial periods (e.g. quarters). A limit on how many units of a token can be spent
per period can be defined (budget) with the default being unlimited. If it is set, Finance will only
allow the budgeted amount of tokens to be spent for the period. The balance for a period can be
negative if it is overspent. The Finance application does not hold funds on its own but interacts
with a Vault or Agent application to execute the payment. Financial statements cannot be
created manually as they are always based on deposit or spent transactions/events.

An entity allowed to create immediate payments in a system that is not restricted by budgets may
be able to spend all of a DAO's funds.

Exported permissions:

Finance.CREATE_PAYMENTS_ROLE

Finance.CHANGE_PERIOD_ROLE

Finance.CHANGE_BUDGETS_ROLE

Finance.EXECUTE_PAYMENTS_ROLE

Finance.MANAGE_PAYMENTS_ROLE

Voting

Allows the DAO to execute arbitrary actions based on voting results.

An entity may create a vote that executes evmScript when it passes. Stakeholders in the DAO
(token holders) can vote with their stake in votings.

Exported permissions:

Voting.CREATE_VOTES_ROLE

Voting.MODIFY_SUPPORT_ROLE

Voting.MODIFY_QUORUM_ROLE

Survey

A survey application similar to Voting for signaling to support and establish community
sentiment. It cannot execute any actions.

Token holders may participate in surveys with their stake.

Exported permissions:

Survey.CREATE_SURVEYS_ROLE

Survey.MODIFY_PARTICIPATION_ROLE

Token Manager

The TokenManager is an abstraction and the controller of a MiniMeToken . A TokenManager for a
specific MiniMeToken is set by calling MiniMeToken.changeController(TokenManager) . One
TokenManager can only be the controller of one MiniMeToken . The TokenManager can mint and
destroy tokens, assign them freely, and define token vestings. Token transfers on a controlled
MiniMeToken cause a hook to be called on the TokenManager which then decides whether to

allow or reject the action.

Token holders of the controlled MiniMeToken may perform actions on behalf of the TokenManager ,
e.g. to create votes or call arbitrary commands by calling TokenManager.forward(evmScript) . If the
TokenManager permits, a token holder may freely transfer tokens to other parties.

Exported permissions:

TokenManager.MINT_ROLE

TokenManager.ISSUE_ROLE

TokenManager.ASSIGN_ROLE

TokenManager.REVOKE_VESTINGS_ROLE

TokenManager.BURN_ROLE

Vault

The value store of the DAO. It manages ERC20 token and ETH assets.

An entity owning the permission to transfer funds has full control over the DAO's assets.

Exported permissions:

Vault.TRANSFER_ROLE

Payroll

An application to manage on-chain salary payments that allows employees to see their available
balance and request payments.

Exported permissions:

Payroll.ADD_EMPLOYEE_ROLE

Payroll.TERMINATE_EMPLOYEE_ROLE

Payroll.SET_EMPLOYEE_SALARY_ROLE

Payroll.ADD_BONUS_ROLE

Payroll.ADD_REIMBURSEMENT_ROLE

Payroll.ALLOWED_TOKENS_MANAGER_ROLE

Payroll.CHANGE_PRICE_FEED_ROLE

Payroll.MODIFY_RATE_EXPIRY_ROLE

DAO Templates

The following section describes the DAO Templates in more detail.

Please refer to 5 Security Specification for a discussion about the security properties.

dot file

Inheritance Graph

A complete view of the inheritance structure:

Components

An actor-centric view on the DAO Templates indicating what functionality is exposed by the DAO
deployment contracts for Bare , Reputation , CompanyBoard , Company , Membership and the
Trust template is shown in the following class diagram. Externally reachable methods are

annotated in green, internal and private functions are yellow or red. A magnifying glass indicates
that the function is pure or view-only. State and constant variables are listed in the top area of the
class illustration.

https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/tool-output/surya/graph.dot.png
https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/tool-output/surya/graph.dot
https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/tool-output/surya/inheritance.dot.png

Bare Template

The following illustration provides an overview of the high level setup steps for this template.

https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/diagrams/dao_templates_uml.png

The Bare template - as the name suggests - deploys a minimum viable DAO. No token will be
created by this template. The DAO's name will not be registered with ENS. The template optionally
allows to initialize one application of the callers choice and finally transfers permissions to the
caller. The application will be initialized with the user provided initializeCalldata . No input
validation is or even can be performed on that data. The caller can also provide a list of
permissions to create on the application. No input validation is performed on this list as well.
Applications that require the presence of a token might not be functional as no token is deployed
with the DAO. The DAO's token might pre-exist though. However, any token can be used and it
can even be non-conformant to the MiniMeToken implementation generally used.

The result is a minimum viable DAO that is barely functional and requires additional manual effort
to be finalized. Please note that there is considerable risk of misconfiguration for this DAO
template. The resulting DAO is both non-transparent as the setup is not fully self-contained in a
smart-contract and centralized with the deployer being the single point of trust. Even if an
application is initially deployed with the template, the application might not be fully functional
(e.g. due to dependencies on other applications being installed).

The DAO comes with an unmanaged default EVMScriptRegistry that includes the CallScript
executor for use with the forwarding functionality in applications.

This template is meant to be further customized.

Company Template

The following illustration provides an overview of the high level setup steps for this template.

https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/diagrams/bare_setup.png

The Company template is similar to the Aragon v0.7 democracy kit with the difference that the
Voting.MODIFY_SUPPORT permission is not burned. The company template is based on a token with

18 decimals that is transferable with no limit being set on how many tokens a single account can
hold. Token holders with their stakes are the key decision makers.

The template creates the new token according to the token parameters as defined in the contract
and deploys a new DAO, initially assigning CREATE_PERMISSIONS and APP_MANAGER roles to itself.
Subsequently the DAO apps are installed and initialized, tokens are minted and the apps'
permissions are set up. Finally, the CREATE_PERMISSIONS and APP_MANAGER roles are transferred to
the Voting application to allow the token holders to vote on DAO related decisions and an ENS
name for the DAO is registered.

This template is similar to Reputation and Membership . The main differences are:

https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/diagrams/company_setup.png
https://github.com/aragon/dao-templates/tree/9886bba4c0a201bf056f44d751373e5d804e1b90/kits/democracy

Reputation does not allow token transfers.
Membership defines a fixed stake of one token per member and the token is not transferable.

Reputation Template

The following illustration provides an overview of the high level setup steps for this template:

While the token configuration is different, the permission setup is basically similar to Company .
The token is configured to not be transferable.

This template is similar to Company and Membership . The main differences are:

Company does allow token transfers.
Membership defines a fixed stake of one token per member.

https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/diagrams/reputation_setup.png

Membership Template

The following illustration provides an overview of the high level setup steps for this template.

The setup is basically similar to Company with the token not being transferable and every member
receiving only one token. The TOKEN_MAX_PER_ACCOUNT setting ensures that each token holder's
balance cannot exceed one token even after the initial minting during the DAO deployment.

This template is similar to Company and Reputation . The main differences are:

Company does allow token transfers.
Reputation allows members to have an arbitrary number of tokens.

Company-Board Template

https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/diagrams/membership_setup.png

The following illustration provides an overview of the high level setup steps for this template. The
deployment is performed in two steps.

https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/diagrams/company-board_setup.png

This template is based on two major groups of actors. The Board is represented by BOARD token
holders, using a membership token (non transferable, one per member) that can be used to vote
in the board voting application, and the Shareholders are represented by SHARE token holders,
using a token that is transferable with no limit on how many tokens a token holder can possess
that can be used to vote in the shareholder voting application.

The DAO is set up by first creating the BOARD and SHARE tokens, then deploying the DAO while
initially assigning CREATE_PERMISSIONS and APP_MANAGER roles to the template contract for further
configuration. Subsequently the voting applications for BOARD and SHARE are installed and
configured. Next, the Vault and Finance applications are installed, initialized, and have their
permissions set up accordingly. After this, Payroll is installed and has its permissions set up before
finalizing the rest of the permissions on the apps. Finally, the CREATE_PERMISSIONS and
APP_MANAGER roles are transferred to the Voting_BOARD application to allow the BOARD to manage

DAO related decisions and an ENS name for the DAO is registered.

Shareholders via Voting_SHARE are set to own and manage most permissions in the system.

Board members are granted the following permissions via Voting_BOARD :

APP_MANAGER

CREATE_PERMISSIONS

All relevant payroll permissions (also being permission manager)
CREATE_PAYMENTS , MANAGE_PAYMENTS , and EXECUTE_PAYMENTS on Finance
EXECUTE calls and RUN_SCRIPT on Agent/Vault

4 Key Observations/Recommendations

Basic documentation including raw specifications, descriptions, an overview of the
permissions and inline documentation for contracts and their exposed functionality is
available.

The code is well written and split up into a BaseTemplate with shared functionality intended
to be used by the individual DAO manifestations.

https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/diagrams/company-board_setup.png

Company , Membership and Reputation unnecessarily duplicate code leading to minor
discrepancies between the code-bases.

The Bare template does not deploy a fully configured and therefore usable DAO.

Trust assumptions for the Bare template highly depend on how the DAO configuration is
finalized.

The DAO Templates, similar to aragonOS, uses Solidity version 0.4.24 which is not in the
latest major version branch of Solidity.

Payroll has no permissions to create payments on Finance. payday() will therefore not be
functional.

The Survey application is not used by any of the DAO templates.

5 Security Specification

This section describes, from a security perspective, the expected behavior of the system under
audit. It is not a substitute for documentation. The purpose of this section is to identify specific
security properties and encourage a discussion about security threats to - and trust assumptions
of - the system.

The DAO Template contracts can be seen as blue-prints for common DAO scenarios. They initially
specify the trust boundaries, actors and functionality provided, the standard applications involved
and their configuration as well as the distribution of power that comprises the DAO's intended use
case. It is important to note that certain roles in a DAO allow modifications of the DAO after
deployment, even when using a DAO template. This is especially true in the beginning of a DAO's
life where a smaller group of majority shareholders might have the power to change and decide
on core attributes and functionality of the DAO. Deploying a DAO from an audited template is
therefore no certification that a DAO is set-up correctly for later users. Furthermore, DAO
templates make use of a on-chain repository to retrieve the address of the latest implementation
of an application. This information can be updated at any point in time, asynchronous to the
release of a new DAO template, given an entity owns the necessary role and permissions to do the
repository update. Application implementations are therefore not in scope for this audit.

5.1 DAO Templates

The maintainer of a deployed DAO Template may be in control of the application repository
that is used with the template and therefore may be able to update application
implementations and front-run the DAO deployer, which may result in an unexpected
application being deployed.

Forwarding functionality in various applications widens the general attack vectors of the
system. At this time, no critical attack vectors have been identified.

Payroll provides forwarding functionality for Employees that allows them to execute
CallScripts by default. The DAO's Finance application is implicitly black-listed by the Payroll
application code during forwarding, disallowing Employees from exploiting a potential
Payroll <--> Finance trust relationship. Please refer to the Payroll audit for further

observations, recommendations and discussions on the trust relationship.

Agent allows permission grantees (usually Voting) to run arbitrary CallScripts by default or
execute arbitrary calls with an ether value transfer.

TokenManager s allow token holders to run arbitrary CallScripts by default. This is usually used
to create votes. The managed MiniMeToken is implicitly black-listed by the TokenManager
application during forwarding, disallowing token holders from exploiting a direct relationship
to the token.

Forwarding functionality can generally be exploited to proxy calls to other contracts.

An EVMScriptManager permission grantee may add a backdoored or malicious script executor,
e.g. to bypass blacklisting restrictions in the default CallScript executor or to execute
arbitrary actions.

Kernel.APP_MANAGER permission grantee may install, modify or upgrade applications to
bypass restrictions or undermine trust assumptions.

Voting systems are often the back-bone of the DAOs.

In many cases token holders or a special group of DAO members can create votes for
benign looking actions that may execute malicious evmscripts in the end. It is therefore
paramount for token holders to verify that a vote's action (evmScript) actually reflects
the vote's intention and does not perform any malicious activity. Token holders may also
attempt to exploit flaws in off-chain applications (e.g. a web application) that are
visualizing on-chain stored data like the voting metadata (html injection, presentation
layer attacks based on utf8 encoding, ...) to trick stakeholders into voting in their favour.
A misconfigured Voting application puts the complete DAO at risk. It is therefore
important to re-verify after deployment that the Voting applications are actually
configured for the intended quorum and support parameters. Furthermore quorum and
support must be chosen wisely for the intended DAO use case.

The templates usually allow the token holders to create a vote that attempts to change
the application's quorum or support . Any attempt to do so must be carefully reviewed
by voters as choosing the wrong parameters for these settings might put the DAO at risk.
Majority token holders might overrule other token holders in the system. Token holders
might collude or try to buy transferable tokens off exchanges to maximize their decision
making power in the DAO with an intent to exploit it.
Members might attempt to block the DAOs' decision-making capability by spamming the
application with legitimate looking votes. A UI visualization of open votes may easily be
overloaded or users might be tricked into participating in the wrong voting if they do not

https://github.com/ConsenSys/aragon-payroll-audit-report-2019-06

verify that they are participating in the vote they actually want to participate in (i.e. they
only check the voting title and not the unique identifier).

The DAO templates are initialized with components that may be operated by a 3rd party.
When using pre-deployed DAO Template contracts (e.g. deployed by the Aragon Association)
the deployer implicitly trusts these entities. For example, the templates are usually initialized
with an external DAOFactory , a MiniMeTokenFactory an ENS provider, and a
IFIFSResolvingRegistrar . Any of these components may act maliciously, e.g. when

bootstrapping a new DAO, creating a new token for the DAO or when resolving the latest
version of applications. Users of pre-deployed DAO Template contracts therefore have to
make sure that the template has been initialized by an entity they trust.

Some templates allow permissions to be delegated to individual entities that are not ruled by
a MultiSig contract or Voting application. It should be noted that these entities may have
critical permissions within the DAO, for example permissions that can indirectly cause harm to
the DAO, e.g. by transferring funds from the Vault (PayrollManager -> Payroll -> Finance ->
Vault -> transfer salary , PriceFeed -> unfair exchange rate for employee or DAO ->
transfer funds). It is recommended to avoid assigning potentially harmful permissions to
individuals as there is a possibility that they turn rogue or are taken over by a third-party to
exploit the DAO. Safeguards must be implemented in order to avoid being exploited by third
party oracles.

Individual permission owners should prove that they took proper action and
implemented secure procedures for key management of their accounts.

Some of the DAOs generated by the templates under audit make use of what are described as
"non-transferable tokens" or "memberships". In the current implementation, nothing prevents
the control of such memberships being transferred or traded if they are under the control of a
proxy contract.

For example, if membership is granted to an address X that has never sent a transaction,
then nothing prevents the subsequent creation of a BoardMember is Ownable contract at
address X . If BoardMember were to expose a vote(...) public onlyOwner function that
proxies votes through to the DAO, then the supposedly non-transferable membership is
under the control of the BoardMember 's current owner , and that ownership can be freely
reassigned. Membership can therefore be transferred or even traded.

Depending on the social-layer processes around membership allocation, this sort of
theoretical transferability might be moot (e.g. if all member addresses must have
originated past transactions and are therefore known to be non-contracts).

If no such social-layer defense can be assumed to exist, then we note that the non-
transferability property of memberships will not be guaranteed.

Ultimately membership association is always susceptible to vectors that are socially
impossible to prevent, like transferring or sharing of private keys.

The DAO templates do not remain in direct control of the deployed DAOs and transfer
ownership and all permissions of the DAO to either an individual or the DAO itself.

The following sections describes each specific template's security in more detail.

Bare Template

This template is meant to provide a minimum viable DAO that should be further customized by
the organization. Not only for transparency it is recommended to create individual deployment
templates for the type of DAO that is needed by a client. DAO templates are highly critical as they
are the blueprint for the organization and any misconfiguration can lead to loss of funds or an
inability to control the DAO. For production use, a unit-tested deployment contract should be
created.

Actors

The relevant actors are as follows:

Template maintainer - deploys and configures the template contract. Is in control of factories
used to deploy a new DAO.
deployer - interacts with the Bare template to deploy a new DAO.
authorizedAddress - an address that is being granted specific permissions on an application.

Trust Model

Template maintainer is a trusted entity.

The trust model is very broad as the deployer might install arbitrary apps with this template.

the DAO template does not remain in control of the newly deployed DAO.

https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/diagrams/bare_perms.png

The deployer is in full control of every aspect of the DAO.

The deployer remains in full control of the DAO even after it has been deployed.

The deployer can create, grant and revoke any permission (CREATE_PERMISSIONS_ROLE ,
permission manager for application permissions).

The deployer is the designated manager of the DAO's applications (APP_MANAGER) and can
therefore install or upgrade applications at any time.

The authorizedAddress is an account designated by the deployer that is granted deployer -
specified permissions on an application that is initially created and linked to the DAO.

This setup is highly centralized with all power being in the hands of the deployer .

This setup is not meant to be used as-is in production but rather as a starting point to build a
custom DAO.

The template provides the ability to install and initialize one application with the DAO. This
functionality is very limited, might not be useful for all applications and therefore leave them
in a semi-configured state. The original rationale for providing the "first" application is to
make it a little bit easier to use the organization (e.g. a single-app organization, which would
work for an organization with just a vault).

Individual accounts are used. The risk of accidental or forceful loss of control of the actors
account(s) must be considered.

It is not recommended to base any production DAO on this template.

Company Template

https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/diagrams/company_perms.png

The central trust anchor for this DAO template is the token holder voting application. The DAO's
token is transferable and the amount of stake an individual address can have is unlimited. Tokens
may also be transferred and traded on exchanges.

Actors

The relevant actors are as follows:

Template maintainer - deploys and configures the template contract. Is in control of factories
used to deploy a new DAO.
deployer - interacts with the Company template to deploy a new DAO.
TokenHolder - are the main decision makers in the DAO. They can create and cast votes to

perform actions with the DAO.
Employee - is an account set-up for payroll in the Payroll application.
EmployeeManagerOrVoting - is either the DAO's stakeholders represented by the voting

application or a designated account in charge of managing employees and their salary.
PriceFeedProvider - Payroll price feed provider

Trust Model

In any smart contract system, it's important to identify what trust is expected/required between
various actors. For this audit, we established the following trust model:

Template maintainer is a trusted entity.

The deployer initially deploys the DAO and transfers all permissions to the Voting
application.

Employees can call arbitrary addresses via Payroll.forward(evmscript) (Finance is
blacklisted).

TokenHolder can call arbitrary addresses via TokenManager.forward(evmscript) (e.g. in a
malicious way in an attempt to cover their tracks when interacting with a third party contract).

TokenHolder can create an arbitrary number of votes via TokenManager.forward(evmscript)
due to TokenManager 's permission on Voting to Voting.CREATE_VOTE .

TokenHolder might create a benign looking vote with a malicious script that is being
executed when the vote passes.

TokenHolder 's can freely transfer, buy and sell tokens. They can collude and cast votes that
they benefit from.

EmployeeManagerOrVoting can drain funds from the Vault if Payroll would be set up correctly
with Finance to execute immediate payments by adding an address as an employee, setting a
salary that is high enough but still in the Finance period's budget (with enough funds in the
vault) and having the employee interact with Payroll to pay out the salary.

Employee may use Payroll's forwarding functionality to proxy calls to arbitrary accounts in an
attempt to hide potentially malicious activity.

The "company" is run by TokenHolder s via a central voting application.

Key properties of the decision making process are the voting application's support and
quorum settings. These settings must be aligned with the DAO's audience and number of
TokenHolder s. A combination of quorum and support that is set too low may leave the

DAO vulnerable to minority shareholders, whereas setting support or quorum too high
may render the DAO uncontrollable with votes being unable to pass (DoS).
Majority TokenHolder s might decide to abstain from voting to intentionally boycott
votes due to required quorum not being reached (DoS).
Especially in the beginning of the DAO, there may be increased risk of single entities
becoming majority TokenHolder s who might attempt to create and execute votes to
exploit the DAO.
There is a risk of dead-stake where TokenHolder hold tokens but abstain from voting.

Both Employees and the DAO have to trust the PriceFeedProvider to receive fair exchange
rates.

If Agent is used as the DAO's Vault, TokenHolder s might decide to pass a vote that calls
Agent.execute and transfer funds from the Vault bypassing the Finance application's

budgeting.

Payroll currently has no permissions on Finance to create payments. Employees therefore
cannot call payday to receive their salary. It is important to make sure that Employees are not
allowed to call Finance via Payroll.forward(evmscript) or else Payroll might be bypassed
and funds might be lost.

Reputation Template

This template shares its security properties and actors with the Company template. The main
difference is that tokens are not transferable and represent each member's reputation in the DAO.
Token amount per address is not limited. Any member can create votes in the DAO.

Membership Template

https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/diagrams/reputation_perms.png
https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/diagrams/membership_perms.png

This template shares its security properties and actors with the Company template. A main
difference is that tokens are not transferable and DAO token holders are limited to one token per
address. Every member's voice has the same weight in the voting application and any member can
create votes.

Company-Board Template

This DAO template is based on split responsibilities where a Board steers the company and is
allowed to perform certain DAO-related actions on their own (through Board-approved voting
decisions) without having to ask shareholders. The shareholders are the controlling party for most
actions but are purely reactionary to the Board as only the Board members are allowed to create
new shareholder votes.

Board tokens are basically membership tokens where every board member is limited to one token
that is not transferable. Share token holders can hold any amount of tokens, freely transfer and
exchange them similar to the Company template.

Actors

The relevant actors are as follows:

Template maintainer - deploys and configures the template contract. Is in control of factories
used to deploy a new DAO.
deployer - interacts with the company template to deploy a new DAO.
Boardmember - individual members holding Board tokens.
BOARD - Boardmember 's voting application that steers the company.
Shareholder - are the controlling party for most actions. They cannot initiate changes and

completely rely on Boardmember s to suggest changes.
Employee - is an account set-up for payroll in the Payroll application.
EmployeeManagerOrBoardVoting - is either the DAO's boardmembers represented by their

voting application or a designated account in charge of managing employees and their salary.
PriceFeedProvider - Payroll price feed provider.

Trust Model

https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/diagrams/company-board_perms.png

In any smart contract system, it's important to identify what trust is expected/required between
various actors. For this audit, we established the following trust model:

Template maintainer is a trusted entity.

The deployer initially deploys the DAO and transfers APP_MANAGEMENT and
CREATE_PERMISSION permissions to the BOARD voting application.

Having APP_MANAGEMENT permissions that are only governed by the board while all other
permissions are under control of shareholders might allow a malicious BOARD to update
applications in order to completely bypass shareholders and take over the DAO.
CREATE_PERMISSON allows a malicious BOARD to take ownership of unassigned and

unburned permissions and potentially elevate their privileges, bypassing shareholder
control to take over the DAO. Please refer to the diagram for a list of un-assigned
permissions.

Boardmembers are in charge of configuring the Payroll application. Board members can
transfer Payroll permissions without control from shareholders.

Boardmembers define EmployeeManagerOrBoardVoting .

EmployeeManagerOrBoardVoting can drain funds from the Vault if Payroll would be set up
correctly with Finance to execute immediate payments by adding an address as an employee,
setting a salary that is high enough but still in the Finance periods budget (with enough funds
in the vault) and having the employee interact with Payroll to pay out the salary.

Employees can call arbitrary addresses via Payroll.forward(evmscript) (Finance is
blacklisted)

Employee may use Payrolls forwarding functionality to proxy calls to arbitrary accounts in an
attempt to hide potentially malicious activity.

Both Employees and the DAO have to trust the PriceFeedProvider to receive fair exchange
rates.

Payroll currently has no permissions on Finance to create payments. Employees therefore
cannot call payday to receive their salary. It is important to make sure that Employees are not
allowed to call Finance via Payroll.forward(evmscript) or otherwise Payroll might be
bypassed and funds might be lost.

Each Boardmember 's voice has the same weight in votes.

Boardmembers can call arbitrary addresses via TokenManager_BOARD.forward(evmscript) (e.g. in
a malicious way in an attempt to cover their tracks when interacting with a third party
contract).

Boardmembers can create votes on the BOARD 's voting application.

Boardmembers can create votes on the Shareholder 's voting application.

Boardmembers may also be a Shareholder in the DAO and therefore also have a stake in
votes they propose to Shareholder s.

Boardmembers may create a benign looking votes with a malicious script that is being
executed when the vote passes (to trick other Boardmembers or Shareholders).

Boardmembers may propose to Shareholder s the addition of an unsafe EVMScriptExecutor
that allows them to bypass Shareholder s.

Boardmembers may drain funds from the Vault bypassing Finance by interacting with
Agent.forward or Agent.execute .

Shareholders cannot intervene if every Boardmember is malicious as only a Boardmember can
propose changes.

Shareholders control BOARD membership by minting or burning tokens to accounts.
However, their control is passive and can only be executed if a Boardmember proposes the
addition or eviction of new BOARD members.

Shareholders can call arbitrary addresses via TokenManager_Share.forward(evmscript) (e.g. in
a malicious way in an attempt to cover their tracks when interacting with a third party
contract).

Shareholders can freely transfer, buy and sell tokens to increase their stake.

Shareholders cannot initiate votes.

The "company" is run by Boardmember s via a central voting application.

Key properties of the decision making process are the voting applications' support and
quorum settings. These settings must be aligned with the DAO's audience and number of
Boardmember s. A combination of quorum and support that is set too low may leave the

DAO vulnerable to minority Shareholder s and on the other hand setting support or
quorum too high may render the DAO uncontrollable with votes being unable to pass

(DoS).
There is a risk of dead-stake where Boardmember s hold tokens but abstain from votes.

Trust Template

Excluded from audit scope - see Audit Scope)

6 Issues

Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around best practices or
readability. Code maintainers should use their own judgment as to whether to address such
issues.

Medium issues are objective in nature but are not security vulnerabilities. These should be
addressed unless there is a clear reason not to.
Major issues are security vulnerabilities that may not be directly exploitable or may require
certain conditions in order to be exploited. All major issues should be addressed.
Critical issues are directly exploitable security vulnerabilities that need to be fixed.

The following table contains all the issues discovered during the audit, ordered based on their
severity.

Chapter Issue Title
Issue
Status

Severity

6.1
Company-Board - Kernel.APP_MANAGER permission
should be ruled by Shareholders instead of Board
members

Closed Major

6.2 Inconsistent Permission Specification DISABLE_PAYMENTS Closed Major

6.3
Company-Board - Inconsistent permissions in Agent
application

Closed Medium

6.4
Company-Board - Inconsistent permissions in Finance
application

Closed Medium

6.5
Payroll is missing permissions to create payments on
Finance

Closed Medium

6.6 Reputation - Missing data location for argument Closed Minor

6.7 Specification Inconsistencies Closed Minor

6.8
Input Validation - aragonId should be checked for empty
string

Closed Minor

6.9 Company, Reputation, Membership - Code Duplications Deferred Minor

6.1 Company-Board - Kernel.APP_MANAGER permission should be ruled by
Shareholders instead of Board members

Severity Status Remediation Comment

Major Closed
Fixed by implementing the recommended remediation with
https://github.com/aragon/dao-templates/pull/150.

Description

https://github.com/aragon/dao-templates/pull/150

The Company-Board template consists of two groups of decision makers, the BOARD members
represented by the board Voting application and the SHARE token holders represented by the
SHARE Voting application. BOARD members are the only group allowed to create votings on the
SHARE and BOARD Voting applications. SHARE holders hold all of the permissions management

roles in the DAO except for permissions in Payroll.

When a new Company-Board based DAO is deployed, core DAO permissions like
Kernel.APP_MANAGER and Acl.CREATE_PERMISSIONS are assigned to the BOARD Voting application

with the permission manager being set to the SHARE Voting application.

code/templates/company-board/contracts/CompanyBoardTemplate.sol:L100-L100

The Kernel.APP_MANAGER permissions allow the grantee to install new applications or upgrade
existing ones. The board might use the upgrading functionality to upgrade existing applications
and therefore work around limitations where the board would actually require a passing vote from
the shareholders.

Remediation

Kernel.APP_MANAGER should be assigned to Voting_SHARE to force boardmembers to go through
a vote in Voting_SHARE when managing applications. The assumption is that this allows
shareholders to block potentially malicious behavior when the board tries to undermine the
shareholder trust relationship.

6.2 Inconsistent Permission Specification DISABLE_PAYMENTS

Severity Status Remediation Comment

Major Closed

Fixed by replacing DISABLE_PAYMENTS with MANAGE_PAYMENTS in the
documentation with https://github.com/aragon/dao-
templates/pull/150. The code itself already assigned MANAGE_PAYMENTS
permissions.

Description

The specification for template Company , Company-Board , Reputation , Membership and trust lists
a permission Finance.DISABLE_PAYMENTS that does not exist. The permission
Finance.MANAGE_PAYMENTS which is not listed in the specification is assigned to Voting instead.

code/templates/trust/README.md:L87-L87

_transferRootPermissionsFromTemplateAndFinalizeDAO(dao, boardVoting, shareVoting);

| Finance | DISABLE_PAYMENTS | Hold Voting | Hold Voting

https://github.com/aragon/dao-templates/pull/150

code/templates/reputation/README.md:L61-L61

code/templates/membership/README.md:L60-L60

code/templates/company/README.md:L61-L61

code/templates/company-board/README.md:L67-L67

Remediation

The specification should always reflect the trust model the DAO template is configuring. It is
therefore important to make sure the specification is accurate at all times. Correct the specification
to include Finance.MANAGE_PAYMENTS instead of Finance.DISABLE_PAYMENTS .

6.3 Company-Board - Inconsistent permissions in Agent application

Severity Status Remediation Comment

Medium Closed

Fixed by removing Shareholder EXECUTE and RUN_SCRIPT roles on
Agent with https://github.com/aragon/dao-templates/pull/150. With

this change only Board owns EXECUTE and RUN_SCRIPT permissions,
managed by Shareholder.

Description

Shareholders have EXECUTE_ROLE and RUN_SCRIPT_ROLE roles in the Agent application of a DAO
created from the Company-Board template.

code/templates/company-board/contracts/CompanyBoardTemplate.sol:L203-L210

| Finance | DISABLE_PAYMENTS | Voting | Voting |

| Finance | DISABLE_PAYMENTS | Voting | Voting |

| Finance | DISABLE_PAYMENTS | Voting | Voting |

| Finance | DISABLE_PAYMENTS | Share Voting | Share Voting |

function _createCustomAgentPermissions(ACL _acl, Agent _agent, Voting _shareVoting, Voting
 address[] memory grantees = new address[](2);
 grantees[0] = address(_shareVoting);
 grantees[1] = address(_boardVoting);

 _createPermissions(_acl, grantees, _agent, _agent.EXECUTE_ROLE(), _shareVoting);

https://github.com/aragon/dao-templates/pull/150

Company-Board DAO should have all the executive roles assigned to the board only and
shareholders should be able to change the board or do the major changes to the system.

Remediation

Remove EXECUTE_ROLE and RUN_SCRIPT_ROLE roles in Agent app from the shareholders (while
preserving shareholders as the role managers).

6.4 Company-Board - Inconsistent permissions in Finance application

Severity Status Remediation Comment

Medium Closed

Fixed by removing Shareholder permissions on Finance with
https://github.com/aragon/dao-templates/pull/150. With this change
only Board is in control of Finance permissions
(CREATE_PAYMENTS , EXECUTE_PAYMENTS , MANAGE_PAYMENTS) while
Shareholder manage the permissions.

Description

Current permission setup for the Finance application in Company-Board template has some
inconsistency.

code/templates/company-board/contracts/CompanyBoardTemplate.sol:L212-L220

Board members are allowed to schedule payments and make immediate payments, which gives
the board full control over the funds (they can create immediate payments to drain the Vault).
Because of that, board members should also be able to execute their scheduled payments and
cancel them.

Additionally, shareholders are able to create, manage and execute payments which are the
executive roles and should only be granted to the board.

 _createPermissions(_acl, grantees, _agent, _agent.RUN_SCRIPT_ROLE(), _shareVoting);
}

function _createCustomFinancePermissions(ACL _acl, Finance _finance, Voting _shareVoting, V
 address[] memory grantees = new address[](2);
 grantees[0] = address(_shareVoting);
 grantees[1] = address(_boardVoting);

 _createPermissions(_acl, grantees, _finance, _finance.CREATE_PAYMENTS_ROLE(), _shareVot
 _acl.createPermission(_shareVoting, _finance, _finance.EXECUTE_PAYMENTS_ROLE(), _shareV
 _acl.createPermission(_shareVoting, _finance, _finance.MANAGE_PAYMENTS_ROLE(), _shareVo
}

https://github.com/aragon/dao-templates/pull/150

Remediation

Let the board have the CREATE_PAYMENTS_ROLE , EXECUTE_PAYMENTS_ROLE and
MANAGE_PAYMENTS_ROLE roles in the Finance app and remove these roles from the shareholders

(while preserving shareholders as the role managers).

6.5 Payroll is missing permissions to create payments on Finance

Severity Status Remediation Comment

Medium Closed

Fixed by implementing the recommended remediation with
https://github.com/aragon/dao-templates/pull/150. Permission
assignment is broken up into multiple steps: the Finance app setup
creating EXECUTE and MANAGE payment roles, another method creating
the CREATE_PAYMENTS role - for some contracts - with permission
manager initially set to the template contract (all but Bare and Trust
template), subsequently granting CREATE_PAYMENTS to Payroll and
finally transferring the role permission manager from the template to
the DAO scenario specific role manager. The template contract does
not remain any permissions on Finance for the deployed DAO.
https://github.com/aragon/dao-templates/pull/150 introduced an
inconsistency with the documentation that has been addressed with
https://github.com/aragon/dao-templates/pull/153.

Description

Employees will not be able to get their salary as Payroll does not have permissions on Finance to
create payments. This permission is needed in order to pay out employee salaries when an
employee calls Payroll.payday() .

Remediation

Grant CREATE_PAYMENT permission on Finance for Payroll. Note even though Payroll allows
employees to call evmScript s, interaction with Finance via forward() is blacklisted.

6.6 Reputation - Missing data location for argument

Severity Status Remediation Comment

Minor Closed
Fixed by adding the missing data location with
https://github.com/aragon/dao-templates/pull/150.

Description

https://github.com/aragon/dao-templates/pull/150
https://github.com/aragon/dao-templates/pull/150
https://github.com/aragon/dao-templates/pull/153
https://github.com/aragon/dao-templates/pull/150

Data location declaration is inconsistent within code that has been duplicated for templates that
are very similar (e.g. Company , Reputation).

code/templates/reputation/contracts/ReputationTemplate.sol:L128-L128

Remediation

Specify the data location for the array: uint64[3] memory _votingSettings

6.7 Specification Inconsistencies

Severity Status Remediation Comment

Minor Closed Fixed with https://github.com/aragon/dao-templates/pull/150.

Description

name in spec is id in code

code/templates/company/README.md:L22-L27

code/templates/company/contracts/CompanyTemplate.sol:L74-L81

Same discrepancy for company-board , membership , reputation , trust .

Remediation

Make sure the code is reflecting the specification.

uint64[3] _votingSettings,

- `name`: Name for org, will assign `[name].aragonid.eth`
- `holders`: Array of token holder addresses
- `stakes`: Array of token stakes for holders (token has 18 decimals, multiply token amount
- `votingSettings`: Array of [supportRequired, minAcceptanceQuorum, voteDuration] to set up
- `financePeriod`: Initial duration for accounting periods, it can be set to zero in order
- `useAgentAsVault`: Use an Agent app as a more advanced form of Vault app

function newInstance(
 string memory _id,
 address[] memory _holders,
 uint256[] memory _stakes,
 uint64[3] memory _votingSettings,
 uint64 _financePeriod,
 bool _useAgentAsVault
)

https://github.com/aragon/dao-templates/pull/150

6.8 Input Validation - aragonId should be checked for empty string

Severity Status Remediation Comment

Minor Closed
Fixed by adding the length check for id and negative tests to the test-
suite with https://github.com/aragon/dao-templates/pull/150.

Description

Upon creating a new instance in all but the Bare template, the caller provides an id argument
to be registered for the org as an ENS subdomain in the form of [id].aragonid.eth . An empty
string for id should not be allowed for registration and therefore checked before trying to
register the ENS subdomain.

code/templates/company/contracts/CompanyTemplate.sol:L74-L90

code/shared/contracts/BaseTemplate.sol:L322-L325

An attempt to register an empty subdomain will subsequently fail in FIFSResolvingRegistrar of
the aragon-id codebase because this will essentially try to register the name of the rootNode .
However, it will fail only late in the DAO deployment process but should do so earlier. It will also
be more consistent with the input validation checks that are already in place.

contracts/FIFSResolvingRegistrar.sol:L54-L57

function newInstance(
 string memory _id,
 address[] memory _holders,
 uint256[] memory _stakes,
 uint64[3] memory _votingSettings,
 uint64 _financePeriod,
 bool _useAgentAsVault
)
 public
{
 _ensureCompanySettings(_holders, _stakes, _votingSettings);

 (Kernel dao, ACL acl) = _createDAO();
 (, Voting voting) = _setupApps(dao, acl, _holders, _stakes, _votingSettings, _financePe
 _transferRootPermissionsFromTemplateAndFinalizeDAO(dao, voting);
 _registerID(_id, dao);
}

function _registerID(string memory _name, address _owner) internal {
 require(address(aragonID) != address(0), ERROR_ARAGON_ID_NOT_PROVIDED);
 aragonID.register(keccak256(abi.encodePacked(_name)), _owner);
}

https://github.com/aragon/dao-templates/pull/150

Remediation

Make sure a valid id was provided, e.g. by adding the following check: require(bytes(id).length
> 0, ID_FOR_DAO_REQUIRED) .

We suggest to implement the same check in FIFSResolvingRegistrar to disallow registration of
empty subdomains.

6.9 Company, Reputation, Membership - Code Duplications

Severity Status Remediation Comment

Minor Deferred Deferred as per Client's decision.

Description

Company , Reputation and Membership share most of the code with minor modifications for either
the token configurations or initial token distribution. For example, Company and Reputation are
almost identical.

Remediation

Consider de-duplicating and therefore increase the maintainability of the code-base to also avoid
discrepancies like the one raised with issue 6.6.

7 Tool-Based Analysis

Several tools were used to perform automated analysis of the reviewed contracts. These issues
were reviewed by the audit team, and relevant issues are listed in the Issue Details section.

7.1 MythX

MythX is a security analysis API for Ethereum smart contracts. It performs
multiple types of analysis, including fuzzing and symbolic execution, to
detect many common vulnerability types. The tool was used for
automated vulnerability discovery for all audited contracts and libraries.
More details on MythX can be found at mythx.io.

function registerWithResolver(bytes32 _subnode, address _owner, IPublicResolver _resolver)
 bytes32 node = keccak256(rootNode, _subnode);
 address currentOwner = ens.owner(node);
 require(currentOwner == address(0));

https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/static-content/mythril.png
https://mythx.io/

Where possible, we ran the full MythX analysis. MythX is still in beta, and where analysis failed, we
fell back to running Mythril Classic, a large subset of the functionality of MythX.

7.2 Ethlint

Ethlint is an open source project for linting Solidity code. Only
security-related issues were reviewed by the audit team.

The raw output of the Ethlint vulnerability scan can be found here.

7.3 Surya

Surya is a utility tool for smart contract systems. It provides a number of visual outputs and
information about the structure of smart contracts. It also supports querying the function call
graph in multiple ways to aid in the manual inspection and control flow analysis of contracts.

A complete list of functions with their visibility and modifiers can be found here.

Appendix 1 - Disclosure

ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the
“Clients”) for performing the analysis contained in these reports (the “Reports”). The Reports may
be distributed through other means, including via ConsenSys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the
Reports do not guarantee the security of any particular project. This Report does not consider, and
should not be interpreted as considering or having any bearing on, the potential economics of a
token, token sale or any other product, service or other asset. Cryptographic tokens are emergent
technologies and carry with them high levels of technical risk and uncertainty. No Report provides
any warranty or representation to any Third-Party in any respect, including regarding the bugfree
nature of code, the business model or proprietors of any such business model, and the legal
compliance of any such business. No third party should rely on the Reports in any way, including
for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not
intended to be relied upon as investment advice, is not an endorsement of this project or team,
and it is not a guarantee as to the absolute security of the project. CD owes no duty to any Third-
Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for
Clients and published with their consent. The scope of our review is limited to a review of Solidity
code and only the Solidity code we note as being within the scope of our review within this report.
The Solidity language itself remains under development and is subject to unknown risks and flaws.
The review does not extend to the compiler layer, or any other areas beyond Solidity that could
present security risks. Cryptographic tokens are emergent technologies and carry with them high
levels of technical risk and uncertainty.

https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/static-content/ethlint.png
https://www.ethlint.com/
https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/tool-output/ethlint/ethlint_report.md
https://github.com/ConsenSys/aragon-daotemplates-audit-report-2019-08/blob/master/tool-output/surya/surya_report.md

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) -- on its
GitHub account (https://github.com/ConsenSys). CD hopes that by making these analyses publicly
available, it can help the blockchain ecosystem develop technical best practices in this rapidly
evolving area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer
links, gain access to web sites operated by persons other than ConsenSys and CD. Such hyperlinks
are provided for your reference and convenience only, and are the exclusive responsibility of such
web sites' owners. You agree that ConsenSys and CD are not responsible for the content or
operation of such Web sites, and that ConsenSys and CD shall have no liability to you or any other
person or entity for the use of third party Web sites. Except as described below, a hyperlink from
this web Site to another web site does not imply or mean that ConsenSys and CD endorses the
content on that Web site or the operator or operations of that site. You are solely responsible for
determining the extent to which you may use any content at any other web sites to which you link
from the Reports. ConsenSys and CD assumes no responsibility for the use of third party software
on the Web Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date
appearing on the Report and is subject to change without notice. Unless indicated otherwise, by
ConsenSys and CD.

https://github.com/ConsenSys

