
mixbytes / audits_public Public

audits_public / Aragon / Open Enterprise / AragonApp.md

VadimBuyanov Adding reports History

 1 contributor

Code Issues Pull requests 3 Actions Projects Security Insights

 master

AragonApp Smart Contract Review

Introduction

General provisions

Aragon is software allowing to freely organize and collaborate without borders or intermediaries.
Create global, bureaucracy-free organizations, companies, and communities.

Autark is an Aragon Network organization building open source tools that serve digital
cooperatives and aims to revolutionize work by leveraging the corresponding challenges.

With this in mind, MixBytes team was willing to contribute to Aragon ecosystem development by
providing security assessment of the Open Enterprise Suite smart contracts created by Autark, as
well as the StandardBounties and AragonApp smart contracts.

Scope of the audit

Code written by: Aragon One

Reviewed commit: AragonApp.sol version 6c7da96.

72 lines (37 sloc) 4.42 KB

https://github.com/mixbytes
https://github.com/mixbytes/audits_public
https://github.com/mixbytes/audits_public
https://github.com/mixbytes/audits_public/tree/master/Aragon
https://github.com/mixbytes/audits_public/tree/master/Aragon/Open%20Enterprise
https://github.com/VadimBuyanov
https://github.com/VadimBuyanov
https://github.com/mixbytes/audits_public/commit/5751f9924c43857f698093d4d2c5b0091e10615c
https://github.com/mixbytes/audits_public/commits/master/Aragon/Open%20Enterprise/AragonApp.md
https://github.com/mixbytes/audits_public
https://github.com/mixbytes/audits_public/issues
https://github.com/mixbytes/audits_public/pulls
https://github.com/mixbytes/audits_public/actions
https://github.com/mixbytes/audits_public/projects
https://github.com/mixbytes/audits_public/security
https://github.com/mixbytes/audits_public/pulse
https://github.com/mixbytes/audits_public/blob/master/Aragon/Open%20Enterprise/MixBytes.png
https://aragon.org/
https://www.autark.xyz/
https://mixbytes.io/
https://github.com/AutarkLabs/open-enterprise/tree/1508acf91ebfd31472cd3cb527ea3e8fa1330757/apps
https://github.com/aragon/aragonOS/blob/6c7da962bd33fb8cab17bf9818f8b73450eaf350/contracts/apps/AragonApp.sol

High-level overview

AragonApp is a base contract for DApp development. It is linked to a so-called kernel. The kernel
stores the addresses of current app implementations which are accessed via proxies. Also, the
kernel provides access to the ACL subsystem. The kernel is the coordination center of an app
system.

AragonApp provides auth and authP modifiers which are thin wrappers over
IKernel.hasPermission function. These modifiers are used to check permissions when accessing

app functions. Besides, AragonApp provides RecoveryVault functionality to recover tokens/ether
sent to the app.

AragonApp uses a proxy mechanism. This approach has several consequences. Firstly, proxies have
to be initialized (you can't use a constructor in case of a proxy). The code of proxy implementation
is usually made uninitializable (petrified) to prevent issues as the one occurred with Parity wallets.
Secondly, code implementation versions must be consistent while accessing the storage. This is
achieved with the help of UnstructuredStorage via direct access to storage slots, the addresses of
which are calculated based on fully qualified field name hashes. Thirdly, the addresses of current
implementations must be kept in the kernel. AragonApp can run EVMScripts. A script executor is
typically determined by the first bytes of the script. Addresses of available executors are stored in
the script registry app. In the most straightforward case, the ACL subsystem tells about “the doer”
(who), the role (what he can do), and applications (where he can perform a role). You can go
further and add rules to the permission. Rules are expression trees encoded in arrays. A number of
variables are exposed to rules at invocation time. Сall-specific values, block parameters, oracles are
among them.

Detected Issues

CRITICAL

Not found

MAJOR

Not found

WARNINGS

1. AragonApp.sol#L56

The function canPerform calls dangerouslyCastUintArrayToBytes that rewrites its argument. So,
the argument _params of canPerform is also rewritten. All the examples in the documentation
use helpers arr with canPerform and authP . However, somebody may avoid using this helper
(for example, if he already has an array of params).

https://github.com/aragon/aragonOS/blob/6c7da962bd33fb8cab17bf9818f8b73450eaf350/contracts/apps/AragonApp.sol#L56

We recommend returning the parameter to its original state by calling
dangerouslyCastBytesToUintArray (example).

Acknowledged

COMMENTS

1. ReentrancyGuard.sol#L25

The reentrancy guard can be optimized using an incrementing value (e.g. this way). This will yield
2-3 times gas savings in some cases.

2. ACL.sol#L245

We recommend at least adding the information about function side effect (rewriting argument
_how) to the function documentation. At most, return the parameter to its original state.

CONCLUSION

Overall code quality is very high. There was only one issue identified that might lead to errors on
rare occasions.

https://gist.github.com/quantum13/968399047d768dde554d7ae1379e6452
https://github.com/aragon/aragonOS/blob/6c7da962bd33fb8cab17bf9818f8b73450eaf350/contracts/common/ReentrancyGuard.sol#L25
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/utils/ReentrancyGuard.sol
https://github.com/aragon/aragonOS/blob/6c7da962bd33fb8cab17bf9818f8b73450eaf350/contracts/acl/ACL.sol#L245

