
mixbytes / audits_public Public

audits_public / Aragon / Open Enterprise / TokenManager.md

VadimBuyanov Adding reports History

 1 contributor

Code Issues Pull requests 3 Actions Projects Security Insights

 master

Open Enterprise Token Manager Smart
Contract Audit Report

Authors

Anton Bukov
Igor Gulamov

Introduction

General provisions

Aragon is software allowing to freely organize and collaborate without borders or intermediaries.
Create global, bureaucracy-free organizations, companies, and communities.

Autark is an Aragon Network organization building open source tools that serve digital
cooperatives and aims to revolutionize work by leveraging the corresponding challenges.

With this in mind, MixBytes team was willing to contribute to Aragon ecosystem development by
providing security assessment of the Open Enterprise Token Manager smart contract created by
Autark.

378 lines (258 sloc) 16 KB

https://github.com/mixbytes
https://github.com/mixbytes/audits_public
https://github.com/mixbytes/audits_public
https://github.com/mixbytes/audits_public/tree/master/Aragon
https://github.com/mixbytes/audits_public/tree/master/Aragon/Open%20Enterprise
https://github.com/VadimBuyanov
https://github.com/VadimBuyanov
https://github.com/mixbytes/audits_public/commit/5751f9924c43857f698093d4d2c5b0091e10615c
https://github.com/mixbytes/audits_public/commits/master/Aragon/Open%20Enterprise/TokenManager.md
https://github.com/mixbytes/audits_public
https://github.com/mixbytes/audits_public/issues
https://github.com/mixbytes/audits_public/pulls
https://github.com/mixbytes/audits_public/actions
https://github.com/mixbytes/audits_public/projects
https://github.com/mixbytes/audits_public/security
https://github.com/mixbytes/audits_public/pulse
https://github.com/mixbytes/audits_public/blob/master/Aragon/Open%20Enterprise/MixBytes.png
https://aragon.org/
https://www.autark.xyz/
https://mixbytes.io/

Scope of the audit

Code written by: Autark

Audited code:

TokenManager version 72fa119
WhitelistOracle version 72fa119

Security Assessment Principles

Classification of Issues

CRITICAL: Bugs that enable theft of ether/tokens, lock access to funds without possibility to
restore it, or lead to any other loss of ether/tokens to be transferred to any party (for
example, dividends).

MAJOR: Bugs that can trigger a contract failure, with further recovery only possible through
manual modification of the contract state or contract replacement altogether.

WARNINGS: Bugs that can break the intended contract logic or enable a DoS attack on the
contract.

COMMENTS: All other issues and recommendations.

Security Assessment Methodology

The audit was performed with triple redundancy by three auditors.

Stages of the audit were as follows:

“Blind” manual check of the code and model behind the code
“Guided” manual check of the code
Check of adherence of the code to requirements of the client
Automated security analysis using internal solidity security checker
Automated security analysis using public analysers
Manual by-checklist inspection of the system
Discussion and merge of independent audit results
Report execution

Detected Issues

CRITICAL

None found

https://github.com/AutarkLabs/aragon-apps/blob/72fa1199148f493166d3ce3915388af21f5eb7e7/apps/token-manager/contracts/TokenManager.sol
https://github.com/AutarkLabs/aragon-apps/blob/72fa1199148f493166d3ce3915388af21f5eb7e7/apps/token-manager/contracts/WhitelistOracle.sol

MAJOR

1.The arguments to scripts seem to be missing.

Location:

TokenManager.sol#L272

Comment: We recommend receiving input from function arguments, otherwise it will be
impossible to create scripts with arguments.

Acknowledged

Client: As long as the inputs are already encoded in the _evmScript this behaves the same. Since the
forwarder interface doesn't expect input
(https://github.com/aragon/aragonOS/blob/07d309f5e81c768269dfc49373d41fac4528ebd2/contrac
ts/common/IForwarder.sol) And the arguments are already being encoded in the _evmScript this will
behave as intended.

I agree at some point it would make sense to expand the forwarders to leverage input, but that's
currently out of scope for this contract as it would require architectural changes to the way
forwarders behave as well as changes to the wrapper that composes those _evmScripts.

2. Vesting gaps check has not been implemented.

Location:

TokenManager.sol#L72-L76

Comment: We suggest appending bool exist to the TokenVesting struct. This would not
lead to the struct size increase because of packing.

Fixed at c2278f6

WARNINGS

1. Solidity constants are not optimized. They work like pure functions, executed upon each
access.

Location:

bytes memory input = new bytes(0); // TODO: Consider input for this

modifier vestingExists(address _holder, uint256 _vestingId) {
 // TODO: it's not checking for gaps that may appear because of deletes in revokeVes
 require(_vestingId < vestingsLengths[_holder], ERROR_NO_VESTING);
 _;
}

https://github.com/AutarkLabs/aragon-apps/blob/72fa1199148f493166d3ce3915388af21f5eb7e7/apps/token-manager/contracts/TokenManager.sol#L272
https://github.com/aragon/aragonOS/blob/07d309f5e81c768269dfc49373d41fac4528ebd2/contracts/common/IForwarder.sol
https://github.com/AutarkLabs/aragon-apps/blob/72fa1199148f493166d3ce3915388af21f5eb7e7/apps/token-manager/contracts/TokenManager.sol#L72-L76
https://github.com/AutarkLabs/aragon-apps/commit/c2278f6b0bf9b89a35dc1f1d7a19ea796968f00d

TokenManager.sol#L24-L29

WhitelistOracle.sol#L17-L18

Comment: We advise to use the following snippet:

Fixed at 78bca05

2. Non-optimized struct read access

Location:

TokenManager.sol#L196-L205

TokenManager.sol#L303-L308

bytes32 public constant MINT_ROLE = keccak256("MINT_ROLE");
bytes32 public constant ISSUE_ROLE = keccak256("ISSUE_ROLE");
bytes32 public constant ASSIGN_ROLE = keccak256("ASSIGN_ROLE");
bytes32 public constant REVOKE_VESTINGS_ROLE = keccak256("REVOKE_VESTINGS_ROLE");
bytes32 public constant BURN_ROLE = keccak256("BURN_ROLE");
bytes32 public constant SET_ORACLE = keccak256("SET_ORACLE");

bytes32 public constant ADD_SENDER_ROLE = keccak256("ADD_SENDER_ROLE");
bytes32 public constant REMOVE_SENDER_ROLE = keccak256("REMOVE_SENDER_ROLE");

bytes32 public constant MINT_ROLE = 0x154c00819833dac601ee5ddded6fda79d9d8b506b911b3dbd

constructor() public {
 require(MINT_ROLE == keccak256("MINT_ROLE"));
}

TokenVesting storage v = vestings[_holder][_vestingId];
require(v.revokable, ERROR_VESTING_NOT_REVOKABLE);

uint256 nonVested = _calculateNonVestedTokens(
 v.amount,
 getTimestamp(),
 v.start,
 v.cliff,
 v.vesting
);

TokenVesting storage tokenVesting = vestings[_recipient][_vestingId];
amount = tokenVesting.amount;

https://github.com/AutarkLabs/aragon-apps/blob/72fa1199148f493166d3ce3915388af21f5eb7e7/apps/token-manager/contracts/TokenManager.sol#L24-L29
https://github.com/AutarkLabs/aragon-apps/blob/72fa1199148f493166d3ce3915388af21f5eb7e7/apps/token-manager/contracts/WhitelistOracle.sol#L17-L18
https://github.com/AutarkLabs/aragon-apps/commit/78bca0538136c73f2687ecd7df6a62f6ff0bd357
https://github.com/AutarkLabs/aragon-apps/blob/72fa1199148f493166d3ce3915388af21f5eb7e7/apps/token-manager/contracts/TokenManager.sol#L196-L205
https://github.com/AutarkLabs/aragon-apps/blob/72fa1199148f493166d3ce3915388af21f5eb7e7/apps/token-manager/contracts/TokenManager.sol#L303-L308

TokenManager.sol#L416-L423

Comment: We recommend replacing storage with memory to perform exactly 2 SLOADs
instead of 4 or 5, since the struct is packed to two 256-bit slots.

Fixed at 6609575

3. Maximum vesting limitation could restrict the number of active vestings

Location: TokenManager.sol#L167

Comment: We suggest having an array of actual vesting id's for each holder, manage it
without gaps and use MAX_ACTIVE_VESTINGS_PER_ADDRESS instead of
MAX_VESTINGS_PER_ADDRESS . You can store all holders’ vesting in a single mapping.

start = tokenVesting.start;
cliff = tokenVesting.cliff;
vesting = tokenVesting.vesting;
revokable = tokenVesting.revokable;

TokenVesting storage v = vestings[_holder][i];
uint256 nonTransferable = _calculateNonVestedTokens(
 v.amount,
 _time,
 v.start,
 v.cliff,
 v.vesting
);

TokenVesting memory v = ...;
...

require(vestingsLengths[_receiver] < MAX_VESTINGS_PER_ADDRESS, ERROR_TOO_MANY_VESTINGS)

uint256 nextVestingId = 1;
mapping(uint256 => TokenVesting) public allVesting;

mapping (address => mapping (uint256 => uint256)) internal vestingIds;
mapping (address => uint256) public vestingsLengths;

function assignVested(...) {
 uint256 vestingId = nextVestingId++;
 uint256 vestingIndex = vestingsLengths[_receiver]++;
 vestingIds[_receiver][vestingIndex] = vestingId;

https://github.com/AutarkLabs/aragon-apps/blob/72fa1199148f493166d3ce3915388af21f5eb7e7/apps/token-manager/contracts/TokenManager.sol#L416-L423
https://github.com/aragon/aragon-apps/commit/66095754257aee24c4ae9c6c21d61aeae475c615
https://github.com/AutarkLabs/aragon-apps/blob/72fa1199148f493166d3ce3915388af21f5eb7e7/apps/token-manager/contracts/TokenManager.sol#L167

Besides, it’s possible to maintain mapping(address => mapping(uint256 => uint256))
vestingIndexById for each receiver to perform a reverse lookup of vestingIndex by vestingId for
O(1).

Acknowledged

Client: I think this change could potentially break backwards compatibility so I'm not sure it's worth
it. I'm also concerned around the check in _transferableBalance (which while noted as not necessary
still currently exists)

COMMENTS

1. A simple transfer can be used instead of a specific MiniMeToken method and a trusted
controller privilege.

Location: TokenManager.sol#L332

Comment: We recommend using the transfer and rename
ERROR_ASSIGN_TRANSFER_FROM_REVERTED to ERROR_ASSIGN_TRANSFER_REVERTED . If this method is

used when transfersEnabled is switched off, this should be mentioned in the comment
above.

2. Code readability improvement proposal

Location: TokenManager.sol#L395-L399

Comment: We advise to use SafeMath whenever possible without forcing a user/auditor to
read the context.

3. Unsafe struct init syntax

 allVesting[vestingId] = TokenVesting(...);
}

// Must use transferFrom() as transfer() does not give the token controller full contro
require(token.transferFrom(address(this), _receiver, _amount), ERROR_ASSIGN_TRANSFER_FR

require(token.transfer(_receiver, _amount), ERROR_ASSIGN_TRANSFER_REVERTED);

// vestedTokens = tokens * (time - start) / (vested - start)
// In assignVesting we enforce start <= cliff <= vested
// Here we shortcut time >= vested and time < cliff,
// so no division by 0 is possible
uint256 vestedTokens = tokens.mul(time.sub(start)) / vested.sub(start);

https://github.com/AutarkLabs/aragon-apps/blob/72fa1199148f493166d3ce3915388af21f5eb7e7/apps/token-manager/contracts/TokenManager.sol#L332
https://github.com/AutarkLabs/aragon-apps/blob/72fa1199148f493166d3ce3915388af21f5eb7e7/apps/token-manager/contracts/TokenManager.sol#L395-L399

Location: TokenManager.sol#L171-L177

Comment: We recommend using a safer syntax for struct initialization. Please notice that the
variable name _vested instead of _vesting may have been mistyped.

4. Silent mistakes problem

Location: WhitelistOracle.sol#L29-L35

Comment: We recommend adding checks to prevent silent mistakes and events.

vestings[_receiver][vestingId] = TokenVesting(
 _amount,
 _start,
 _cliff,
 _vested,
 _revokable
);

vestings[_receiver][vestingId] = TokenVesting({
 amount: _amount,
 start: _start,
 cliff: _cliff,
 vesting: _vested,
 revokable: _revokable
});

function addSender(address _sender) external auth(ADD_SENDER_ROLE){
 validSender[_sender] = true;
}

function removeSender(address _sender) external auth(REMOVE_SENDER_ROLE) {
 validSender[_sender] = false;
}

string private constant ERROR_SENDER_ALREADY_ADDED = "WO_ERROR_SENDER_ALREADY_ADDED";
string private constant WO_ERROR_SENDER_NOT_EXIST = "WO_ERROR_SENDER_NOT_EXIST";

event ValidSenderAdded(address indexed sender);
event ValidSenderRemoved(address indexed sender);

function addSender(address _sender) external auth(ADD_SENDER_ROLE){
 require(!validSender[_sender], WO_ERROR_SENDER_ALREADY_ADDED);
 validSender[_sender] = true;
 ValidSenderAdded(_sender);
}

function removeSender(address _sender) external auth(REMOVE_SENDER_ROLE) {
 require(validSender[_sender], WO_ERROR_SENDER_NOT_EXIST);

https://github.com/AutarkLabs/aragon-apps/blob/72fa1199148f493166d3ce3915388af21f5eb7e7/apps/token-manager/contracts/TokenManager.sol#L171-L177
https://github.com/AutarkLabs/aragon-apps/blob/72fa1199148f493166d3ce3915388af21f5eb7e7/apps/token-manager/contracts/WhitelistOracle.sol#L29-L35

5. Unused variables in the getTransferability function

Location: WhitelistOracle.sol#L37

Comment: We suggest commenting or removing the names of unused variables if the
function must correspond to the signature getTransferability(address,address,uint256) .
Also, make sure that only _from value is enough to determine the function return value.

6. Burn method could be used for stealing from holders

Location: TokenManager.sol#L140-L143

Comment: We recommend removing the burn method. The concern about vestings is about
fairness of the already vested amount, but this method allows the admin to burn the holder's
balance.

7. Storage variables in the upgradable contract

Location: TokenManager.sol#L55-L61

 validSender[_sender] = false;
 ValidSenderRemoved(_sender);
}

function getTransferability(address _from, address _to, uint256 _amount) external retur

function getTransferability(address _from, address /*_to*/, uint256 /*_amount*/) extern

function burn(address _holder, uint256 _amount) external authP(BURN_ROLE, arr(_holder,
 // minime.destroyTokens() never returns false, only reverts on failure
 token.destroyTokens(_holder, _amount);
}

MiniMeToken public token;
ITransferOracle public oracle;
uint256 public maxAccountTokens;

// We are only mimicking an array in the inner mapping and use a mapping instead to mak
mapping (address => mapping (uint256 => TokenVesting)) internal vestings;
mapping (address => uint256) public vestingsLengths;

https://github.com/AutarkLabs/aragon-apps/blob/72fa1199148f493166d3ce3915388af21f5eb7e7/apps/token-manager/contracts/WhitelistOracle.sol#L37
https://github.com/AutarkLabs/aragon-apps/blob/72fa1199148f493166d3ce3915388af21f5eb7e7/apps/token-manager/contracts/TokenManager.sol#L140-L143
https://github.com/AutarkLabs/aragon-apps/blob/72fa1199148f493166d3ce3915388af21f5eb7e7/apps/token-manager/contracts/TokenManager.sol#L55-L61

Comment: Make sure that the upgradability framework does not affect the positions of
storage variables or use low-level calls with UnstructuredStorage or EthernalStorage.

Conclusion

Overall security level of the system was rated “Average”. No critical flaws were found. However,
there was quite a number of issues worth paying attention to. Some of them can be regarded as a
known expected behavior, but others require fixes (e.g. not implemented to-do points and gas
cost optimizations).

The fixed contracts of TokenManager and WhitelistOracle don’t have any vulnerabilities according
to our analysis.

using UnstructuredStorage for bytes32;

bytes32 public constant MINIME_TOKEN = 0x39526e419af036dca68e4194c2c904991e4eed0cdc629d

constructor() public {
 require(MINIME_TOKEN == keccak256("MINIME_TOKEN"));
}

function method() public {
 MiniMeToken token = MiniMeToken(MINIME_TOKEN.getStorageAddress());
 // do something with token
}

https://github.com/AutarkLabs/aragon-apps/blob/2330aac6a28b04ad29a7cf247179ed0009c1d7e4/apps/token-manager/contracts/TokenManager.sol
https://github.com/AutarkLabs/aragon-apps/blob/2330aac6a28b04ad29a7cf247179ed0009c1d7e4/apps/token-manager/contracts/WhitelistOracle.sol

