
mixbytes / audits_public

Code Issues Pull requests 1 Actions Projects Wiki Security In

audits_public / LTO-tokensale / audit_en.md

Eenae
moved to the root
History

0
contributors

master

Audit of LTO Token Sale Contracts

Introduction

General Provisions

The LTO Network team asked MixBytes to audit their token sale contracts. The code is located in
the hidden github repository.

Scope of the Audit

The primary scope of the audit is smart contracts at
https://github.com/legalthings/tokensale/tree/02fa2620aef4c854675230b6544461961d47f968/con
tracts. Migrations at
https://github.com/legalthings/tokensale/tree/02fa2620aef4c854675230b6544461961d47f968/mi
grations were also included in the scope as they contain mission critical deployment and
configuration code which ties the system together. Audited commit is
02fa2620aef4c854675230b6544461961d47f968.
Subsequently we were also asked to audit the
revised token at
https://github.com/legalthings/tokensale/blob/98ba921251fb4989d18f8b99a2bfc732f2056937/co
ntracts/LTOToken.sol.

216 lines (112 sloc)

16.1 KB

https://github.com/mixbytes
https://github.com/mixbytes/audits_public
https://github.com/mixbytes/audits_public
https://github.com/mixbytes/audits_public/issues
https://github.com/mixbytes/audits_public/pulls
https://github.com/mixbytes/audits_public/actions
https://github.com/mixbytes/audits_public/projects
https://github.com/mixbytes/audits_public/wiki
https://github.com/mixbytes/audits_public/security
https://github.com/mixbytes/audits_public/pulse
https://github.com/mixbytes/audits_public
https://github.com/mixbytes/audits_public/tree/master/LTO-tokensale
https://github.com/mixbytes/audits_public/commit/f3d6f284abd9738fd1b5f6d478a74e802fc31757
https://github.com/mixbytes/audits_public/commits/master/LTO-tokensale/audit_en.md
https://github.com/mixbytes/audits_public/blob/master/LTO-tokensale/MixBytes.png
https://mixbytes.io/
https://github.com/legalthings/tokensale/tree/02fa2620aef4c854675230b6544461961d47f968/contracts
https://github.com/legalthings/tokensale/tree/02fa2620aef4c854675230b6544461961d47f968/migrations
https://github.com/legalthings/tokensale/blob/98ba921251fb4989d18f8b99a2bfc732f2056937/contracts/LTOToken.sol

Security Assessment Principles

Classification of Issues

CRITICAL: Bugs that enable theft of ether/tokens, lock access to funds without possibility to
restore it, or lead to any other loss of ether/tokens to be transferred to any party (for
example, dividends).

MAJOR: Bugs that can trigger a contract failure, with further recovery only possible through
manual modification of the contract state or contract replacement altogether.

WARNINGS: Bugs that can break the intended contract logic or enable a DoS attack on the
contract.

COMMENTS: All other issues and recommendations.

Security Assessment Methodology

The audit was performed with triple redundancy by three auditors.

Stages of the audit were as follows:

“Blind” manual check of the code and model behind the code
“Guided” manual check of the code
Check of math balance
Check of adherence of the code to requirements of the client
Automated security analysis using internal solidity security checker
Automated security analysis using public analysers
Manual by-checklist inspection of the system
Discussion and merge of independent audit results
Report execution

Detected Issues

CRITICAL

None found

MAJOR

None found

WARNING

1.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
Token.sol#L23-L24

Generation of two events in the form emit Transfer(address(0), receiver address, amount);
should be added. Otherwise, some client software won’t recognize the arrival of the tokens to
msg.sender and _bridgeAddress recipients.

Fixed in 686101d

2.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
Token.sol#L52

The recipient address specified in the Transfer event does not match factual address of the
recipient (which can be seen here). In case this was made on purpose we should note that it’ll
hinder diagnosing of the contract operation.We recommend to do actual transfer using
super.transfer function.

Fixed in 686101d

3.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
Token.sol#L64

In case _intermediate is being used at the moment by some user addIntermediateAddress call
will cause all token transfers to this user to fail to reach them. It’ll be difficult to diagnose this
situation because of the problem with the Transfer event described above. Access to the
addIntermediateAddress function is limited to the address stored in the bridgeAddress field, but

for the moment, code that will be used is unavailable to the audit. It’s a common security
approach to assume that the problem described above will take place, accidentally or as a result of
more complex attack vector.
A minimal, but not complete, solution is to add a check that the
token balance of _intermediate address is zero at the moment of addIntermediateAddress call. A
definitive solution can be designed only with the bridge mechanics in mind.

Fixed in 686101d

4.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
Token.sol#L59

Obviously, totalSupply_ is being maintained as a difference between total amount of tokens
(internalTotalSupply) and amount of tokens in bridgeAddress possession. However,
totalSupply_ value won’t be properly updated in case of transferFrom function usage, which is

inherited from the StandardToken .

Fixed in 686101d

5.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
Token.sol#L46

https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOToken.sol#L23-L24
https://github.com/legalthings/tokensale/commit/686101da5682fb5a167ae460e1c45138242c295b
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOToken.sol#L52
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOToken.sol#L51
https://github.com/legalthings/tokensale/commit/686101da5682fb5a167ae460e1c45138242c295b
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOToken.sol#L64
https://github.com/legalthings/tokensale/commit/686101da5682fb5a167ae460e1c45138242c295b
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOToken.sol#L59
https://github.com/legalthings/tokensale/commit/686101da5682fb5a167ae460e1c45138242c295b
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOToken.sol#L46

There are mechanics which allows users to transfer tokens from some predefined addresses
(enumerated in intermediateAddresses) to the bridge balance. However, mechanics can be
bypassed, and tokens can be transferred, to an address. This applies even if this address is listed in
intermediate addresses in case of transferFrom function usage, which is inherited from the
StandardToken .

Fixed in 686101d

6.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
TokenSale.sol#L215

Users sending ether from contracts which default function performs nontrivial computations (e.g.
writing value to a new storage variable) won’t be able to receive their tokens, while the project
won’t be able to receive transferred ether. This is caused by limited gas stipend of the transfer
function.
It’s recommended to use [withdrawal pattern]
(https://solidity.readthedocs.io/en/v0.4.24/common-patterns.html#withdrawal-from-contracts) to
send change and to untie sending of change from other actions. I.e. we recommend offering
change to users during withdrawal or withdrawalFor transaction processing via send or, failing
that, with a separate transaction via a dedicated function call.

Fixed in PR #18

7.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
TokenSale.sol#L215

Malicious contract (or contracts which default function performs nontrivial computations) can
block a change to it and as a result any transaction which calls _withdrawal for this contract will
be reverted. Therefore withdrawn will never reach purchaserList.length and the clear function
will be blocked, which will result in blocking some tokens and ether on the balance of
LTOTokenSale . The ether vulnerable to this attack includes only ether deposited to the contract

bypassing buy() and default functions, which is why it’s not a serious problem. It is worth noting
that tokens transferred to the contract by creators exceeding totalSaleAmount are vulnerable to
the attack.
It’s recommended using withdrawal pattern to send change and to untie sending of
change from other actions. I.e. we recommend to send change to users during withdrawal or
withdrawalFor transaction processing via send or, failing that, with a separate transaction via a

dedicated function call.

Fixed in PR #14

8.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
TokenSale.sol#L223

Payments are not expected to be sent to this function. We therefore recommend removing the
payable keyword to prevent accidental ether transfer to the contract which won’t be processed

by the token sale logic.

Fixed in PR #14

https://github.com/legalthings/tokensale/commit/686101da5682fb5a167ae460e1c45138242c295b
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOTokenSale.sol#L215
https://solidity.readthedocs.io/en/v0.4.24/common-patterns.html#withdrawal-from-contracts
https://github.com/legalthings/tokensale/pull/18
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOTokenSale.sol#L215
https://solidity.readthedocs.io/en/v0.4.24/common-patterns.html#withdrawal-from-contracts
https://github.com/legalthings/tokensale/pull/14
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOTokenSale.sol#L223
https://github.com/legalthings/tokensale/pull/14

9.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
TokenSale.sol#L227

Payments are not expected to be sent to this function. We therefore recommend removing
payable keyword to prevent accidental ether transfer to the contract which won’t be processed

by the token sale logic.

Fixed in PR #14

10.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
TokenSale.sol#L233

Payments are not expected to be sent to this function. We therefore recommend removing
payable keyword to prevent accidental ether transfer to the contract which won’t be processed

by the token sale logic.

Fixed in PR #14

11.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
TokenSale.sol#L199

An attacker can send some value of ether in the first transaction, receive maximum bonus and
then send 99 transactions of minimal value minimumAmount , depriving other token sale participants
of their bonuses. Essentially this is griefing of a transaction counter. This makes economic sense
given some conditions, because the fewer participants receive their bonuses, the lower the price is
to the attacker compared to the average price, making the following sale more profitable for the
attacker.

Acknowledged

12.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
TokenSale.sol#L179

Individual cap mechanics are subject to Sybil attack. An user can distribute his N ethers to uint(N
/ maximumCapAmount) + 1 distinct addresses, and perform purchase from each of these addresses,
effectively bypassing maximumCapAmount limit.

Acknowledged

13. The burning of unsold tokens was mentioned by the client. However, in the contracts code there is no sign
of such mechanics and LTOToken is not burnable.

Fixed in PR #16

14.
https://github.com/legalthings/tokensale/blob/98ba921251fb4989d18f8b99a2bfc732f2056937/contracts/LTO
Token.sol#L19

https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOTokenSale.sol#L227
https://github.com/legalthings/tokensale/pull/14
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOTokenSale.sol#L233
https://github.com/legalthings/tokensale/pull/14
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOTokenSale.sol#L199
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOTokenSale.sol#L179
https://github.com/legalthings/tokensale/pull/16
https://github.com/legalthings/tokensale/blob/98ba921251fb4989d18f8b99a2bfc732f2056937/contracts/LTOToken.sol#L19

Generation of an event in the form emit Transfer(address(0), _bridgeAddress, _bridgeSupply);
should be added. Otherwise, some client software won’t recognize the arrival of the tokens to the
_bridgeAddress .

Fixed in PR #18

COMMENT

1.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
Token.sol#L67

The only value besides 0, which a key X can have in the intermediateAddresses mapping, is the Х
itself. It means that logically this mapping has boolean value type, i.e. mapping (address => bool) .
We recommend using this type explicitly and making appropriate code changes to simplify
reasoning about the code.

2.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
Token.sol#L60

We recommend using SafeMath.sub here because this code fragment has a high probability of
underflow error.

3.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
TokenSale.sol#L249

The only value besides 0, which a key X can have in the capFreeAddresses mapping, is the Х itself.
It means that logically this mapping has boolean value type, i.e. mapping (address => bool) . We
recommend using this type explicitly and making appropriate code changes to simplify reasoning
about the code.

4.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
TokenSale.sol#L218

This branch is unachievable in practise (it requires ~5e14 ether to achieve), we recommend
replacing it with assert(false); .

5.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
TokenSale.sol#L144

Expression totalWannaBuyAmount == 0 here is unachievable, we recommend removing it from if-
operator and introduce assert(totalWannaBuyAmount > 0); instead.

6.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
TokenSale.sol#L120

https://github.com/legalthings/tokensale/pull/18
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOToken.sol#L67
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOToken.sol#L60
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOTokenSale.sol#L249
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOTokenSale.sol#L218
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOTokenSale.sol#L144
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOTokenSale.sol#L120

In startSale function it would be helpful to ensure that token balance of the contract is equal to
totalSaleAmount . Otherwise, if the token balance is less than totalSaleAmount some ether will be

locked in the contract forever.

7.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
TokenSale.sol#L105

Right after deployment of the contract isEnded function will return true . This won’t cause any
troubles in this version of the code, but it’s better to return false in case the sale was never
started (similar check is present in isStarted).
The same holds for isUserWithdrawalTime ,
isClearTime functions.

8.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
TokenSale.sol#L145

It’s better to use the ethDecimals constant, instead of the 1 ether value to prevent possible
inconsistencies.

9.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
TokenSale.sol#L191

Condition <= is excessive and can be replaced with a strict comparison (<).

10.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
TokenSale.sol#L176

Keeping a purchasers list in purchaserList and further processing in withdrawalFor incurs a high
gas consumption. At this moment, calling withdrawalFor is required to get all possible ether from
the contract and to send tokens and ether to purchasers. These two processes can be separated
and gas spendings by the project can be minimized. Amount of ether to be withdrawn by the
project can be calculated based on globalAmount , totalSaleAmount and totalWannaBuyAmount
and withdrawn in one transaction.

11.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
TokenSale.sol#L123

We recommend creating the explicit view function isSaleInitialized and use it here to prevent
double initialization, as well as throughout isStarted , isEnded and other state querying
functions.

12.
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTO
TokenSale.sol#L235

We recommend checking the result of token transfer call.

https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOTokenSale.sol#L105
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOTokenSale.sol#L145
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOTokenSale.sol#L191
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOTokenSale.sol#L176
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOTokenSale.sol#L123
https://github.com/legalthings/tokensale/blob/02fa2620aef4c854675230b6544461961d47f968/contracts/LTOTokenSale.sol#L235

13. There are a lot of states and state transitions involved in the token sale contract, e.g. sale started, sale
ended, user withdrawal time etc. We recommend using state machine to remove some code complexity and
ensure correct operation, as can be seen in this example.

14.
https://github.com/legalthings/tokensale/blob/98ba921251fb4989d18f8b99a2bfc732f2056937/contracts/LTO
Token.sol#L35

Tokens which were accidentally sent to the bridge address could not be recovered. We
recommend adding require(to != bridgeAddress); check.

15.
https://github.com/legalthings/tokensale/blob/98ba921251fb4989d18f8b99a2bfc732f2056937/contracts/LTO
Token.sol#L38

If value is expected to be greater than bridgeBalance in some cases we recommend adding
check require(value <= bridgeBalance); . The reason is that assert inside the
bridgeBalance.sub should never be reached during an expected path of execution of the code.

16.
https://github.com/legalthings/tokensale/blob/98ba921251fb4989d18f8b99a2bfc732f2056937/contracts/LTO
Token.sol#L56

The sum of balances is not equal to totalSupply . This behavior could be unexpected for some
tools or clients.

CONCLUSION

The overall security level of the system was rated “High”. No major flaws were found. However,
there were many issues about which we warned the client. Some of them can be accepted as a
known expected behavior, but some, in our opinion, required fixes, e.g., ones related to withdrawal
functions. All necessary changes were made and existed in
pool request #19 branch.

https://solidity.readthedocs.io/en/v0.4.24/common-patterns.html#state-machine
https://github.com/legalthings/tokensale/blob/98ba921251fb4989d18f8b99a2bfc732f2056937/contracts/LTOToken.sol#L35
https://github.com/legalthings/tokensale/blob/98ba921251fb4989d18f8b99a2bfc732f2056937/contracts/LTOToken.sol#L38
https://github.com/legalthings/tokensale/blob/98ba921251fb4989d18f8b99a2bfc732f2056937/contracts/LTOToken.sol#L56
https://github.com/legalthings/tokensale/pull/19

