Secure Decentralized Solutions

Avalaunch Audit <>Allocation Staking
and Sales

8 September 2, 2021 & Heloisa Ceni #® No Comments

Reading Time: 4 minutes

Need Help with a Decentralized App?
CoinFabrik specializes in auditing and developing Dapps.

CONTACT US

Shares

<

Contents
1. Introduction
1.1. Summary
1.2. Contracts
1.3. Analyses
1.4. Findings and Fixes
1.5. Severity Classification
2. Issues Found by Severity
2.1. Critical severity
2.1.1. CR-01 Double Withdrawals Allowed in withdrawTokens()
2.1.2. CR-02 Earlier-than-expected Withdraw in withdrawTokens()
2.2. Medium severity
2.2.1. ME-01 Denial of Service in depositTokens()
2.2.2. ME-02 Excessive DepositFees Through Settings Manipulation
2.2.3. ME-03 Vesting Settings Allowing Excessive or Insufficient Token Withdrawal
2.3. Minor Severity
2.3.1. MI-01 Denial of Service in postponeSale()
2.3.2. MI-02 Requirements Best Practices
2.3.3. MI-03 Denial Of Service by Removing All the Administrators
2.4. Enhancements
2.4.1. Constants and Code Legibility
2.4.2. Small Precision In Vesting Scheme
2.4.3. Gas Optimization in the Round Structure
2.4.4. Unnecessary Code in setRounds()
2.4.5. Gas Optimization in massUpdatePool() and compound()

2.4.6. Gas Optimization in Poollnfo

3. Conclusion

ntroduction

CoinFabrik was asked to audit the contracts for the Avalaunch project. First we will
provide a summary of our discoveries and then we will show the details of our
findings.

Summary

The contracts audited are from the Github repository at
https://github.com/avalaunch-app/xava-protocol/. The audit is based on the
commit fd252f8b9b0283d245d9d561130fe789ff08dfe9. Next, developers fixed
issues and we re-checked commit
ac00d9c0d66b4abc3a892530c9dfc349811050ad.

Contracts

The audited contracts are:

e contracts/AllocationStaking.sol

e contracts/sales/SalesFactory.sol

e contracts/sales/AvalaunchSale.sol

Analyses

The following analyses were performed:
e Misuse of the different call methods

e Integer overflow errors

e Division by zero errors

e Outdated version of Solidity compiler
e Front running attacks

e Reentrancy attacks

e Misuse of block timestamps

e Softlock denial of service attacks

e Functions with excessive gas cost

e Missing or misused function qualifiers

e Needlessly complex code and contract interactions
e Poor or nonexistent error handling

e Failure to use a withdrawal pattern

e Insufficient validation of the input parameters

e Incorrect handling of cryptographic signatures

Findings and Fixes

1D Title Severity Status

CR-01 Double Withdrawals Allowed in Critical Fixed
withdrawTakens()

CR-02 Earlier-than-expected Withdraw in Critical Fixed
withdrawTokens()

ME-01 Denial of Service in depositTokens() Medium Fixed

ME-0Q2 Excessive DepositFees Through Medium Fixed

Settings Manipulation
ME-03 | Vesting Settings Allowing Excessive ar Medium Fixed
Insufficient Token Withdrawal

MI-01 Denial of Service in postponeSale() Minor Fixed

MI-02 Requirements Best Practices Minor Fixed

MI-03 Denial OFf Service by Removing Every Minor Fixed

Administrators

Severity Classification

Security risks are classified as follows:

e Critical: These are issues that we manage to exploit. They compromise the
system seriously. They must be fixed immediately.

e Medium: These are potentially exploitable issues. Even though we did not
manage to exploit them or their impact is not clear, they might represent a
security risk in the near future. We suggest fixing them as soon as possible.

e Minor: These issues represent problems that are relatively small or difficult to
take advantage of but can be exploited in combination with other issues. These
kinds of issues do not block deployments in production environments. They should
be taken into account and be fixed when possible.

e Enhancement: These kinds of findings do not represent a security risk. They are

best practices that we suggest to implement.
This classification is summarized in the following table:

SEVERITY EXPLOITABLE ROADBLOCK TO BE FIXED
Critical Yes Yes Immediately
Minor Unlikely No Eventually
Enhancement No Mo Eventually

Issues Found by Severity

Critical severity
CR-01 Double Withdrawals Allowed in withdrawTokens()

The function fails to mark a portion as withdrawn. This may be due to a typo in the

line

[1 Ip.isPortionWithdrawn[portionIdJ;

As a result, any user can withdraw the same portion more than once.
Recommendation

Set

(l |p.isPortionWithdrawn	l;portionId] = true;

Solution

The issue was fixed following the recommendation.

CR-02 Earlier-than-expected Withdraw in withdrawTokens()

When withdrawing tokens for a given portionID the function checks that

r1

Ll |vestingPortionsUnlockTime[portionId} >= block.timestamp

so that all portions can be vested at the start.
Recommendation

Check the opposite condition.

Solution

The issue was fixed following the recommendation.

Medium severity
ME-01 Denial of Service in depositTokens()

The function depositTokens() in AvalaunchSale requires that

(1 |sale.token.balanceOf(address(this)) == 0

Hence, a malicious user could transfer a minimal amount of tokens to the contract
so the above condition is not met.

Recommendation

Instead, use

(1 |require(!sale.tokensDeposited, message) ;

Solution

The issue was fixed following the recommendation

ME-02 Excessive DepositFees Through Settings
Manipulation
Both when the AllocationStaking contract is initialized and when

setDepositFee() is called, _depositFeePercent may be set to any value

independently of _depositFeePrecision. The same consideration should apply

during initialization (_depositFeePercent must be smaller than the public

variable depositFeePrecision = 10e8).
Solution

The issue was fixed following the recommendation.

ME-03 Vesting Settings Allowing Excessive or Insufficient
Token Withdrawal

In setVestingParams () no checks are made that the sum of _percents is 100. For
example, if _percents[@] = 200, when a user calls withdrawTokens() he

would receive twice the amount bought:

[l | p.amountBought.mul (vestingPercentPerPortion[portionId]) .div (10 0)

Similarly, if the sum is smaller than 100, the user would be prevented from vesting
all the tokens he bought.

Recommendation

Require that the sum of the percentages is 100.
Solution

The issue was fixed following the recommendation.

Minor Severity
MI-01 Denial of Service in postponeSale()

Using a large value for timeToShift in postponeSale() may shift
round.startTime to be bigger than sale.saleEnd rendering the sale useless.

Recommendation

Require that round.startTime + timeToShift < sale.saleEnd.

Solution

The issue was fixed following the recommendation.

MI-02 Requirements Best Practices

In different places in the contacts we see requirements of the following sort:

1| require(condition == true, msgqg)
require (condition == false, msq)

which although allowed, are not preferred. Instead use require(condition, msg) and
require(!condition, msqg) respectively. These may use less gas.

Solution
Fixed.

MI-03 Denial Of Service by Removing All the Administrators

The function removeAdmin() can be called arbitrarily and could be used to

remove every administrator.

Recommendation

Make sure that this does not happen by requiring that 1en(Admin) > 1.
Solution

Fixed. The recommended change was applied.

Enhancements
Constants and Code Legibility

Use one in

1| uint256 amountOfTokensBuying =
(msg.value) .mul (10**18) .div (sale.tokenPriceInAVAX) ;

instead of 10**18. Similarly, the value 1e36 is used throughout the AllocationStake
contract. Consider replacing this with a constant that can be called by its name.

Small Precision In Vesting Scheme

The precision for the percentage points is set to 1(so that all values go from 1to
100). Using a larger number could accommodate more flexibility.

Gas Optimization in the Round Structure

The struct Round defined in AvalaunchSale.sol has two unspecified uints (uint
startTime; uint maxParticipation;) and in the struct Registration all objects can fit in
256.

Unnecessary Code in setRounds()

The function makes use of a for loop which verifies conditions for every round.
However, in some cases, only the first and last rounds need to be checked.
Specifically,

1| require (startTimes[0] > registration.registrationTimeEnds) ;
2 | require (startTimes[0] >= block.timestamp) ;
3

since the code also requires that startTimes[i] > startTimes[i-1] for every .
Analogously, checking

[1 |require(startTimes[lastJ < sale.saleEnd):;

is sufficient.

Gas Optimization in massUpdatePool () and compound()

Consider factoring updatePoolWithFee() so that the computation of nrOfSeconds
is only done once (and not once per pool.) This same behaviour is seen in
compound() which makes two calls to updatePoolWithFee() (the first one via
updatePool()). In the second, nrOfSeconds will be O and most of the logic is
useless. Consider

decoupling the two functionalities in order to save gas

Gas Optimization in Poolinfo

A gas optimization for Poollnfo could be done by reducing the size of the
lastRewardTimestamp and allocPoint. For example, fitting each into an uint128 (so
the two fit into 32 bytes).

Note that, since 2432 —1is a timestamp for February 2106, 32 bits are enough for a
timestamp and 128 is obviously sufficient. If less than 2”128 allocation points are
sufficient per pool, then restructuring Poolinfo as we proposed can be done.

Conclusion

We found the contracts to be simple and straightforward. Documentation is scarce.
Two critical vulnerabilities were found which could allow a user to withdraw tokens
in excess or before their time. These issues were fixed. Three medium severity
issues were found, one of which allows a malicious user to make a sale contract
unusable, and the two other which can be exercised when the administrator sets
incorrect parameters—so they are unlikely to be exploitable. All issues have been
resolved.

MORE DETAILS

Disclaimer: This audit report is not a security warranty, investment advice, or an
approval of the Avalaunch project since CoinFabrik has not reviewed its platform.
Moreover, it does not provide a smart contract code faultlessness guarantee.

0

Shares
Related Posts
4 Katana Smart Contract Audit

CoinFabrik was asked to audit the contracts for the
Katana project. First we will provide...

Stasis Token Smart Contract Audit

e

STASIS

Q Blox

STAKING

Coinfabrik has been hired to audit the smart contracts

for Stasis sale, the Stable Euro...

BLOX STAKING Audit: Vesting and DEX Contracts

Introduction CoinFabrik was asked to audit the

contracts for the Vesting for Blox Staking. First...

YFFIl Smart Contract Audit

CoinFabrik was asked to audit the contracts for the

YFFII project. First we will provide...

Categorized in: Smart Contract Audit, Smart Contracts

ALSO ON COINFABRIK

BLOX STAKING Audit:
Vesting and DEX ...

a month ago

Introduction CoinFabrik was
asked to audit the contracts
for the Vesting for Blox ...

iCherry Smart Contract
Audit

a year ago * 1 comment

CoinFabrik was asked to
audit the contracts for the
ICherry Finance project. ...

Known Origin Digital
Asset Audit

a month ago + 1 comment

Introduction CoinFabrik was
asked to audit the contracts
for the Known Origin ...

An
to

3 ¢
The
ine
ha\

0 Comments CoinFabrik @ Disqus' Privacy Policy ﬂ Login

Q© Recommend Sort by Best

. Start the discussion...
N

LOG IN WITH OR SIGN UP WITH DIsaus (?)

Name

Be the first to comment.

4 subscribe) Add Disqus to your siteAdd DisqusAdd 4 Do Not Sell My Data

Blockchain Development Company | Smart Contract Audit |
Windows Driver Development | Outlook 365 Plugin Development | XiRgEZA

