
Security Audit Report for Alpaca Delta
Neutral Vault

Date: Feb 18, 2022

Version: 1.0

Contact: contact@blocksecteam.com

mailto:contact@blocksecteam.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 1

1.3 Procedure of Auditing . 1

1.3.1 Software Security . 2

1.3.2 DeFi Security . 2

1.3.3 NFT Security . 2

1.3.4 Additional Recommendation . 2

1.4 Security Model . 3

2 Findings 4
2.1 Software Security . 4

2.1.1 Potential Precision Loss . 4

2.1.2 Unreturned Values . 5

2.1.3 Unchecked Initialization Parameters . 5

2.2 DeFi Security . 6

2.2.1 Unlimited Withdraw Value . 6

2.2.2 Potential Locking of Native Tokens . 8

2.2.3 Unchecked Price . 8

2.2.4 Potential Locked Tokens . 9

2.3 Additional Recommendation . 9

2.3.1 Avoiding Duplicated Calculations . 9

2.3.2 Avoiding Inconsistency Checks in the Worker Contracts 10

2.3.3 Considering the Impact of Transaction Ordering Dependency 11

i

Report Manifest

Item Description
Client Alpaca
Target Alpaca Delta Neutral Vault

Version History

Version Date Description
1.0 Feb 18, 2022 First Release

About BlockSec The BlockSec Team focuses on the security of the blockchain ecosystem, and col-

laborates with leading DeFi projects to secure their products. The team is founded by top-notch security

researchers and experienced experts from both academia and industry. They have published multiple

blockchain security papers in prestigious conferences, reported several zero-day attacks of DeFi applica-

tions, and released detailed analysis reports of high-impact security incidents. They can be reached at

Email, Twitter and Medium.

ii

https://www.blocksecteam.com
mailto:contact@blocksecteam.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The auditing process is iterative. Specifically, we will audit the commits that fix the discovered issues.

If there are new issues, we will continue this process. The commit SHA values of the repo 1 during the

audit are shown in the following.

Contract Name Stage Commit SHA
delta-neutral-vault Initial cb13e32fe5a4ba6f63b0235bd4624715592e4abe

delta-neutral-vault Final e7c3899416e86a045011febec7a5cc986176e406

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report do not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

1https://github.com/alpaca-finance/bsc-alpaca-contract/tree/feat/delta-neutral-vault/contracts/8.10

1

https://github.com/alpaca-finance/bsc-alpaca-contract/tree/feat/delta-neutral-vault/contracts/8.10

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

Reentrancy

DoS

Access control

Data handling and data flow

Exception handling

Untrusted external call and control flow

Initialization consistency

Events operation

Error-prone randomness

Improper use of the proxy system

1.3.2 DeFi Security

Semantic consistency

Functionality consistency

Access control

Business logic

Token operation

Emergency mechanism

Oracle security

Whitelist and blacklist

Economic impact

Batch transfer

1.3.3 NFT Security

Duplicated item

Verification of the token receiver

Off-chain metadata security

1.3.4 Additional Recommendation

Gas optimization

Code quality and style�
Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

2

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.

Accordingly, the severity measured in this report are classified into four categories: High, Medium, Low
and Undetermined.

Furthermore, the status of a discovered issue will fall into one of the following four categories:

Undetermined No response yet.

Acknowledged The issue has been received by the client, but not confirmed yet.

Confirmed The issue has been recognized by the client, but not fixed yet.

Fixed The issue has been confirmed and fixed by the client.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we find seven potential issues in the smart contract. We also have three recommendations,

as follows:

High Risk: 1

Medium Risk: 2

Low Risk: 4

Recommendations: 3

ID Severity Description Category Status

1 Medium Potential Precision Loss Software Security Fixed

2 Low Unreturned Values Software Security Fixed

3 Low Unchecked Initialization Parameters Software Security Fixed

4 High Unlimited Withdraw Value DeFi Security Fixed

5 Low Potential Locking of Native Tokens DeFi Security Fixed

6 Medium Unchecked Price DeFi Security Fixed

7 Low Potential Locked Tokens DeFi Security Acknowledged

8 - Avoiding Duplicated Calculations Recommendation Fixed

9 -
Avoiding Inconsistency Checks in the

Worker Contracts
Recommendation Fixed

10 -
Considering the Impact of Transac-

tion Ordering Dependency
Recommendation Acknowledged

The details are provided in the following sections.

2.1 Software Security

2.1.1 Potential Precision Loss

Status Fixed

Description In the DeltaNeutralVault contract and the two worker contracts, there are cases of multi-

plying after division which may cause precision losses. For example,

1. In the withdraw() function of the DeltaNeutralVault contract, the variable _withdrawValue is divided

by 1e18. After that, this variable is passed into the _withdrawHealthCheck() function and used as a

multiplier. If the result of _stableWithdrawValue + _assetWithdrawValue fall into the range of 1e18

- 10e18, the precision loss might be up to almost 50%, which can lead to the failure of invoking the

_withdrawHealthCheck() function.

311 uint256 _withdrawValue;

312 {

313 uint256 _stableWithdrawValue = _stableTokenBack * priceHelper.getTokenPrice(

stableToken);

314 uint256 _assetWithdrawValue = _assetTokenBack * priceHelper.getTokenPrice(

assetToken);

315 _withdrawValue = (_stableWithdrawValue + _assetWithdrawValue) / 1e18;

4

316 }

317
318 // sanity check

319 _withdrawHealthCheck(_withdrawValue, _positionInfoBefore, _positionInfoAfter);

Listing 2.1: withdraw():DeltaNeutralVault.sol

408 uint256 _stableExpectedWithdrawValue = (_withdrawValue *_positionInfoBefore.

stablePositionEquity)/_totalEquityBefore;

409 uint256 _stableActualWithdrawValue = _positionInfoBefore.stablePositionEquity -

_positionInfoAfter.stablePositionEquity;

410
411 if(!Math.almostEqual(_stableActualWithdrawValue, _stableExpectedWithdrawValue,

_toleranceBps)){

412 revert UnsafePositionValue();

413 }

414 uint256 _assetExpectedWithdrawValue = (_withdrawValue *_positionInfoBefore.

assetPositionEquity)/_totalEquityBefore;

Listing 2.2: _withdrawHealthCheck():DeltaNeutralVault.sol

2. In the _withdrawHealthCheck() function of the DeltaNeutralVault contract, the two variables, i.e.,

_stableExpectedWithdrawValue and _assetExpectedWithdrawValue, are calculated by being first di-

vided by _totalEquityBefore, and then multiplied in the Math.almostEqual() function. The precision

loss brought here may affect the result of the _withdrawHealthCheck() function as well.

Impact It may cause (severe) precision losses.

Suggestion Apply the proper method to perform the calculation.

2.1.2 Unreturned Values

Status Fixed

Description The return value of the claim() function is not properly asigned.

572 /// @notice Claim Alpaca reward of stable vault and asset vault

573 function claim() external returns (uint256, uint256) {

574 uint256 rewardStableVault = _claim(IVault(stableVault).fairLaunchPoolId());

575 uint256 rewardAssetVault = _claim(IVault(assetVault).fairLaunchPoolId());

576 }

Listing 2.3: DeltaNeutralVault.sol

Impact The return values of the claim() function is always 0.

Suggestion Return the variables properly.

2.1.3 Unchecked Initialization Parameters

Status Fixed

Description There are no checks on the parameters of the initialize() function of the DeltaNeutralVault

contract.

5

123 function initialize(

124 string calldata _name,

125 string calldata _symbol,

126 address _stableVault,

127 address _assetVault,

128 address _stableVaultWorker,

129 address _assetVaultWorker,

130 address _lpToken,

131 address _alpacaToken,

132 IPriceHelper _priceHelper,

133 IDeltaNeutralVaultConfig _config

134) external initializer {

135 OwnableUpgradeable.__Ownable_init();

136 ReentrancyGuardUpgradeable.__ReentrancyGuard_init();

137 ERC20Upgradeable.__ERC20_init(_name, _symbol);

138
139 stableVault = _stableVault;

140 assetVault = _assetVault;

141
142 stableToken = IVault(_stableVault).token();

143 assetToken = IVault(_assetVault).token();

144 alpacaToken = _alpacaToken;

145
146 stableVaultWorker = _stableVaultWorker;

147 assetVaultWorker = _assetVaultWorker;

148
149 lpToken = _lpToken;

150
151 priceHelper = _priceHelper;

152 config = _config;

153 }

Listing 2.4: DeltaNeutralVault.sol

Impact N/A

Suggestion Check the initialization parameters in the initialize() function.

2.2 DeFi Security

2.2.1 Unlimited Withdraw Value

Status Fixed

Description
The logic of the withdraw() function in DeltaNeutralVault is implemented as follows:

1. Burning specified number of shares from the caller.

2. Partially or entirely closing the position by calling the _execute() function for parameter _data.

3. Calculating the real value withdrawn, and returning the corresponding tokens to the user.

However, in this function, there is no check between the user shares burnt and the actual value

withdrawn by invoking _execute().

6

263 /// @notice Withdraw from delta neutral vault.

264 /// @param _shareAmount Amount of share to withdraw from vault.

265 /// @param _minStableTokenAmount Minimum stable token shareOwner expect to receive.

266 /// @param _minAssetTokenAmount Minimum asset token shareOwner expect to receive.

267 /// @param _data The calldata to pass along to the proxy action for more working context.

268 function withdraw(

269 uint256 _shareAmount,

270 uint256 _minStableTokenAmount,

271 uint256 _minAssetTokenAmount,

272 bytes calldata _data

273) public onlyEOAorWhitelisted nonReentrant returns (uint256 _withdrawValue) {

274
275 address _shareOwner = msg.sender;

276 PositionInfo memory _positionInfoBefore = positionInfo();

277 Outstanding memory _outstandingBefore = _outstanding();

278
279 uint256 _shareValue = shareToValue(_shareAmount);

280 _burn(_shareOwner, _shareAmount);

281
282 {

283 (uint8[] memory actions, uint256[] memory values, bytes[] memory _datas) = abi.decode(

284 _data,

285 (uint8[], uint256[], bytes[])

286);

287 _execute(actions, values, _datas);

288 }

289
290 PositionInfo memory _positionInfoAfter = positionInfo();

291 Outstanding memory _outstandingAfter = _outstanding();

292
293 // transfer funds back to shareOwner

294 uint256 _stableTokenBack = stableToken == config.getWrappedNativeAddr()

295 ? _outstandingAfter.nativeAmount - _outstandingBefore.nativeAmount

296 : _outstandingAfter.stableAmount - _outstandingBefore.stableAmount;

297 uint256 _assetTokenBack = assetToken == config.getWrappedNativeAddr()

298 ? _outstandingAfter.nativeAmount - _outstandingBefore.nativeAmount

299 : _outstandingAfter.assetAmount - _outstandingBefore.assetAmount;

300
301 if (_stableTokenBack < _minStableTokenAmount) {

302 revert InsufficientTokenReceived(stableToken, _minStableTokenAmount, _stableTokenBack);

303 }

304 if (_assetTokenBack < _minAssetTokenAmount) {

305 revert InsufficientTokenReceived(assetToken, _minAssetTokenAmount, _assetTokenBack);

306 }

307
308 _transferTokenToShareOwner(_shareOwner, stableToken, _stableTokenBack);

309 _transferTokenToShareOwner(_shareOwner, assetToken, _assetTokenBack);

310
311 uint256 _withdrawValue;

312 {

313 uint256 _stableWithdrawValue = _stableTokenBack * priceHelper.getTokenPrice(stableToken);

314 uint256 _assetWithdrawValue = _assetTokenBack * priceHelper.getTokenPrice(assetToken);

7

315 _withdrawValue = (_stableWithdrawValue + _assetWithdrawValue) / 1e18;

316 }

317
318 // sanity check

319 _withdrawHealthCheck(_withdrawValue, _positionInfoBefore, _positionInfoAfter);

320 _outstandingCheck(_outstandingBefore, _outstandingAfter);

321
322 emit LogWithdraw(_shareOwner, _stableTokenBack, _assetTokenBack);

323 return _withdrawValue;

324 }

Listing 2.5: DeltaNeutralVault.sol

Impact Malicious users can withdraw more value than the shares they owned.

Suggestion Check the actual withdraw value with the burnt shares.

2.2.2 Potential Locking of Native Tokens

Status Fixed

Description In the deposit() function of the DeltaNeutralVault contract, the _transferTokenToVault()

function is called to transfer both native tokens and ERC-20 tokens to the vault. However, if either

assetToken or stableToken is config.getWrappedNativeAddr() (i.e., WBNB for the Binance Smart Chain),

this function will directly deposit the transferred value to WBNB. However, the function does not check

whether msg.value is the same as the _amount passed as the parameter. As such, if msg.value is larger

than _amount, it may cause some native tokens (i.e., BNB) being locked in this contract.

181 /// @notice Get token from msg.sender.

182 /// @param _token token to transfer.

183 /// @param _amount amount to transfer.

184 function _transferTokenToVault(address _token, uint256 _amount) internal {

185 if (_token == config.getWrappedNativeAddr()) {

186 IWETH(config.getWrappedNativeAddr()).deposit{ value: _amount }();

187 } else {

188 SafeToken.safeTransferFrom(_token, msg.sender, address(this), _amount);

189 }

190 }

Listing 2.6: DeltaNeutralVault.sol

Impact The native tokens will be locked in the contract if the msg.value is larger than _amount.

Suggestion Add sanity checks to prevent the locking.

2.2.3 Unchecked Price

Status Fixed

Description The DeltaNeutralVault contract relies on a PriceHelper contract to request price informa-

tion from Chainlink to calculate the prices for the tokens provided by users and LP tokens. Specifically, the

obtained price is associated with a timestamp. However, this timestamp is not verified in the PriceHelper

contract. As a result, the obtained price may be outdated and hence invalid.

8

69 function getTokenPrice(address tokenAddress) public view returns (uint256) {

70 (uint256 price, uint256 lastTimestamp) = chainLinkPriceOracle.getPrice(tokenAddress, usd);

71 return price;

72 }

Listing 2.7: PriceHelper.sol

Impact The prices returned by the PriceHelper contract may be invalid.

Suggestion Check returned timestamp in the PriceHelper contract.

2.2.4 Potential Locked Tokens

Status Acknowledged

Description
To provide flexibility to the DeltaNeutralVault contract, the actual operations are wrapped as a raw

calldata parameter to the functions. As a result, a user needs to specify the amount of tokens to transfer to

this contract. Therefore, there is a possibility that the executed operations use less token than the actual

amount deposited by the user. As there is no way of withdrawing these extraneous tokens, they will be

locked in the contract.

Impact Some of the tokens provided by the users may be locked in the DeltaNeutralVault contract.

Suggestion N/A

Feedback from the Developers We can reinvest the left over native token by wrapping and depositing

WBNB in positions. Our users will benefit from the reinvest since the equity will increase but the total

share remain the same. Since the contract is upgradable if there are some funds left in the contract, we

can upgrade the contract then extract it.

2.3 Additional Recommendation

2.3.1 Avoiding Duplicated Calculations

Status Fixed

Description In the positionInfo() function of the DeltaNeutralVault contract, the _positionDebtValue()

function is invoked multiple times with the same parameters. As the _positionDebtValue() function has

several external calls, the duplicated calls may lead to unnecessary gas consumption.

456 function positionInfo() public view returns (PositionInfo memory) {

457 return

458 PositionInfo({

459 stablePositionEquity: _positionEquity(stableVault, stableVaultWorker, stableVaultPosId),

460 stablePositionDebtValue: _positionDebtValue(stableVault, stableVaultPosId),

461 assetPositionEquity: _positionEquity(assetVault, assetVaultWorker, assetVaultPosId),

462 assetPositionDebtValue: _positionDebtValue(assetVault, assetVaultPosId)

463 });

464 }

Listing 2.8: DeltaNeutralVault.sol

9

509 function _positionEquity(address _vault, address _worker, uint256 _posId) internal view returns

(uint256) {

510 uint256 _positionValue = _positionValue(_worker);

511 uint256 _positionDebtValue = _positionDebtValue(_vault, _posId);

512 if(_positionValue < _positionDebtValue){

513 return 0;

514 }

515 return _positionValue - _positionDebtValue;

516 }

Listing 2.9: DeltaNeutralVault.sol

Impact The duplicated calculations may cause extraneous gas usage.

Suggestion Remove the duplicated calculations.

2.3.2 Avoiding Inconsistency Checks in the Worker Contracts

Status Fixed

Description In the work() function of the DeltaNeutralPancakeWorker02 contract, there is a guard in the

_reinvest() call to check whether treasuryAccount and treasuryBountyBps are set. However, there is no

corresponding check in the DeltaNeutralMdexWorker02 contract.

262 function work(

263 uint256 id,

264 address user,

265 uint256 debt,

266 bytes calldata data

267) external override onlyWhitelistedCaller(user) onlyOperator nonReentrant {

268 // 1. If a treasury configs are not ready. Not reinvest.

269 if (treasuryAccount != address(0) && treasuryBountyBps != 0)

270 _reinvest(treasuryAccount, treasuryBountyBps, actualBaseTokenBalance(), reinvestThreshold

);

Listing 2.10: DeltaNeutralPancakeWorker02.sol

260 function work(

261 uint256 id,

262 address user,

263 uint256 debt,

264 bytes calldata data

265) external override onlyWhitelistedCaller(user) onlyOperator nonReentrant {

266 // 1. reinvest

267 _reinvest(treasuryAccount, treasuryBountyBps, actualBaseTokenBalance(), reinvestThreshold);

Listing 2.11: DeltaNeutralMdexWorker02.sol

Impact N/A

Suggestion Remove the unnecessary check.

10

2.3.3 Considering the Impact of Transaction Ordering Dependency

Status Acknowledged

Description In functions deposit() and withdraw() of the DeltaNeutralVault contract, the parameter

_data are crucial in managing the position of DeltaNeutralVault in Vault. We assume that it may be

pre-calculated by the frontend for users. However, the calculation will be based on the state which may

be affected by the order of the transactions inside one block. In this case, it may cause the failure of the

transactions.

Impact N/A

Feedback from the Developers Yes, the failure due to transaction ordering is expected behavior. For

example, if the prices from oracle deviate from DEXes too much, it will affect the equity value of the

positions and transaction should revert.

11

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Potential Precision Loss
	2.1.2 Unreturned Values
	2.1.3 Unchecked Initialization Parameters

	2.2 DeFi Security
	2.2.1 Unlimited Withdraw Value
	2.2.2 Potential Locking of Native Tokens
	2.2.3 Unchecked Price
	2.2.4 Potential Locked Tokens

	2.3 Additional Recommendation
	2.3.1 Avoiding Duplicated Calculations
	2.3.2 Avoiding Inconsistency Checks in the Worker Contracts
	2.3.3 Considering the Impact of Transaction Ordering Dependency

		2022-02-18T21:00:29+0800
	BlockSec Audit Team

