
bZx Network Smart Contracts Audit
by ZK Labs

MATTHEW DI FERRANTE

2018-09-01



bZx Network Smart Contracts Audit by ZK Labs 2018-09-01

• Introduction
• Authenticity
• Audit Goals and Focus

– Smart Contract Best Practices
– Code Correctness
– Code Quality
– Security
– Testing and testability

• About bZx Network
• Terminology

– Likelihood
– Impact
– Severity

• Overview
• Source Code
• General Notes
• Top-level Contracts

– bZx.sol
– bZxVault.sol
– bZxTo0x.sol

• Module Contracts
– bZxStorage.sol
– bZxLoanMaintenance.sol
– bZxLoanHealth.sol
– bZxProxyContracts.sol
– bZxOrderTaking.sol
– bZxOrderHistory.sol
– bZxTradePlacing.sol

• Oracle Contracts
– OracleRegistry.sol
– bZxOracle.sol

• Modifier/support Contracts
– InternalFunctions.sol
– GasRefunder.sol
– GasTracker.sol
– EMACollector.sol
– bZxOwnable.sol

• Token Contracts

Matthew Di Ferrante 2



bZx Network Smart Contracts Audit by ZK Labs 2018-09-01

– EIP20.sol
– TokenRegistry.sol
– EIP20Wrapper.sol
– BaseToken.sol
– bZxToken.sol
– UnlimitedAllowanceToken.sol

• Testing
• Findings

Introduction

ZK Labs was contracted to perform an audit of the bZx Network smart contracts. Our findings are
detailed below.

Neither ZK Labs nor Matthew Di Ferrante have any stake or vested interest in bZx Network. This audit
was performed under a contracted rate with no other compensation.

Authenticity

This document should have an attached cryptographic signature to ensure it has not been tampered
with. The signature can be verified using the public key from http://keybase.io/mattdf

Audit Goals and Focus

Smart Contract Best Practices

This audit will evaluate whether the codebase follows the current established best practices for smart
contract development.

Code Correctness

This audit will evaluate whether the code does what it is intended to do.

Code Quality

This audit will evaluate whether the code has been written in a way that ensures readability and
maintainability.

Matthew Di Ferrante 3



bZx Network Smart Contracts Audit by ZK Labs 2018-09-01

Security

This audit will look for any exploitable security vulnerabilities, or other potential threats to either the
operators of bZx or its users.

Testing and testability

This audit will examine how easily tested the code is, and review how thoroughly tested the code is.

About bZx Network

The bZx network project is a decentralized margin lending protocol & liquidation oracle marketplace
on the Ethereum blockchain.

Terminology

This audit uses the following terminology.

Likelihood

How likely a bug is to be encountered or exploited in the wild, as specified by the OWASP risk rating
methodology.

Impact

The impact a bug would have if exploited, as specified by the OWASP risk rating methodology.

Severity

How serious the issue is, derived from Likelihood and Impact as specified by the OWASP risk rating
methodology.

Matthew Di Ferrante 4



bZx Network Smart Contracts Audit by ZK Labs 2018-09-01

Overview

Source Code

The protocol smart contract source codewasmade available in the “audit” branch of the https://github.
com/b0xNetwork/protocol_contracts/ Github repository.

The snapshot of the codebase at the time of the audit can be found below:

1 ./modules/BZxLoanHealth.sol
2 f9f57fa157d1e815ca3ab95ed2dcf59eaa5856c7e5c44cc37ebdd588716f87f7
3
4 ./modules/BZxTradePlacing0xV2.sol
5 92d4789b6e6bd98bb98e18cf2578ad8b5f9eb6c2816d99d18be384422fbaef5e
6
7 ./modules/BZxOrderHistory.sol
8 ca26464dff5113495a694093c81eb3eba24a03e99f5ddc8816d424cf63ea86a2
9
10 ./modules/BZxProxyContracts.sol
11 bbc6794ae0bb66b62bb79fd08530d836c5b0a6e122f02f7019e5ff57b89f2a6d
12
13 ./modules/BZxStorage.sol
14 920f9f4daeba22536895ad0d60ce7bf1baee5974f6fad8b366034abf563a17a1
15
16 ./modules/BZxTradePlacing.sol
17 3726abc7c5aa1cebae1ea72b220e0e53e2464dd74ab6300da5e462e70829dbf2
18
19 ./modules/BZxOrderTaking.sol
20 2adad6e9c1d0a15ff8d61c070832409ccd3ecc25efd69386ec45a525f3744b59
21
22 ./modules/BZxLoanMaintenance.sol
23 ba3895f93841d797ddffcb327cb650f7deeb2fcd933bff3f2f20e22f195d88de
24
25 ./tokens/BZRxToken.sol
26 97e79c4ef188eee0fb223d588d59fae1ccede8d2e1cb34060deb58e9faa21535
27
28 ./tokens/EIP20.sol
29 4e5fcba2465cc22e4685f60cc83d23873f795c7ae8425966f849d9dedd16551b
30
31 ./tokens/TokenRegistry.sol
32 3a648548d3084925f5c04d10c7e3b1bf88b5fb3d60a575dcbeddb8498cd1feff
33
34 ./tokens/EIP20Wrapper.sol

Matthew Di Ferrante 5



bZx Network Smart Contracts Audit by ZK Labs 2018-09-01

35 847d03fa54037836eb74ee4a781d9559ecf8d4cde2635da228ccdbcb59a0ae89
36
37 ./tokens/BaseToken.sol
38 2a986d3dae51530628abc20acf8c2f7981b20bd737b7f3f0d7e83ac8c6840054
39
40 ./tokens/BZRXFakeFaucet.sol
41 b0f49db7a82c19b1679b5d5d5e8aaaba195cf378cc73930be5796db066dd1e3c
42
43 ./tokens/UnlimitedAllowanceToken.sol
44 97d7901ec3c6c5c5dff32e682a7f2bb6007920e059a8ef53a092a4e519690ecf
45
46 ./BZx.sol
47 1fee5cdb1433a131d2e64dc3416636dbfe7865dae2a57e5870624456900c7980
48
49 ./BZxVault.sol
50 b3a86f1730634b01a036e72655595efbdc94f594e17016f13db1d75689a91657
51
52 ./MultiSigWallet/MultiSigWallet.sol
53 387b274da5e94b6fe3d480143b61c06286ddc1177423848e90cbd0aed08634bd
54
55 ./MultiSigWallet/MultiSigWalletWithCustomTimeLocks.sol
56 50d7e27130f8cd9c886ed3d053579ac4a6df7d55cee2a1fb6d61f6bc77a203da
57
58 ./shared/Debugger.sol
59 ced37922ac936e78ea0219995fa8911e16343ea650884edda04a96d28aeaeab0
60
61 ./shared/InternalFunctions.sol
62 353229b419671ca8afcbcc362cf3f6e265e7ddf74f435c0c72887416c1173264
63
64 ./ZeroEx/ExchangeInterface.sol
65 8ffafa2b8d191ee2629b7e15177f772a662fc05f240ce900d990f88ddeb26d3d
66
67 ./ZeroEx/ExchangeV2InterfaceWithEvents.sol
68 d55afb55e24e23fbb19b84b28232e58253e7b3e4185097e2762c821fb47edf4f
69
70 ./ZeroEx/ZeroExV2Helper.sol
71 bb39fe0b3be5a16a0d5d52bca91f31e904dc98045b2474801856797c7b2e8253
72
73 ./ZeroEx/BZxTo0x.sol
74 561fb395e9d0f11eb750a74d6c3ef717e20d0dffaf1b488c6546ab80300d7e93
75
76 ./ZeroEx/BZxTo0xV2.sol
77 1246f99d2d7f39cb48f022716a924624fd02d68ed36451a3e0e78f5dda261752

Matthew Di Ferrante 6



bZx Network Smart Contracts Audit by ZK Labs 2018-09-01

78
79 ./ZeroEx/ExchangeV2Interface.sol
80 ab50684b4d82a8cf56b997690031118d1ce2d4929f464933931268ea489be53b
81
82 ./ZeroEx/LibEIP712.sol
83 be742d6bfccbd1cb135bccdce886f21364d3373ff458c6263a7b1257d9c5e226
84
85 ./oracle/OracleInterface.sol
86 025254a55a625be6c9f7bcba552cff50ed08c6b72b1470e4c9a62fb6bf7065c9
87
88 ./oracle/OracleRegistry.sol
89 c7e7f1e2c927511fa2524d975b638240f2b773472c50f912b611093a70938f57
90
91 ./oracle/BZxOracle.sol
92 15fd8259410a20d19f54933715f884b9c3fc0cacb8a0dae5b3841d40b0522a2b
93
94 ./oracle/OracleTest.sol
95 8a67f41721cde1815267788b037e2cfac7388d985b7d5cbd5c581a4f05c956be
96
97 ./modifiers/GasRefunder.sol
98 5ad39de3967be056fd1f52ff17b4912c06704e57bcde473e3bc3758af024c728
99
100 ./modifiers/GasTracker.sol
101 112a200663cce01991f9a55de78ff8d2743cc429735d21a30eee3ab5fe0c898d
102
103 ./modifiers/BZxOwnable.sol
104 c62ef444fc90401fd6433058947525026d0183ed6d5b2ebf66b04cd9dfdd571b
105
106 ./modifiers/EMACollector.sol
107 3f812f48b3f5c8f5fce6315d87cd7abc2054006e455bff4a0671ce8cdaec70d7
108
109 ./migrations/Migrations.sol
110 00bec8074c72a22393cf64d31cb0f9d8f153acc58a72e4268577e49dc38886bf

The code makes extensive use of OpenZeppelin library code, which was not audited as part of this
audit.

General Notes

The code is generally well structured and properly compartmentalized. It makes extensive use of the
OpenZeppelin smart contracts, which reduces the count of lines that need to be independently audited
and the risk of bugs.

Matthew Di Ferrante 7



bZx Network Smart Contracts Audit by ZK Labs 2018-09-01

Most of the platform contracts are easily upgradeable through the Proxy, and the Oracle contract
upgradeable via a registry. Only the Proxy contract cannot be upgraded a�er deployment.

Themain risk comes from the Proxy contract storage being able to be written freely to by any of the
delegatecall contracts, which makes it such that an upgrade to any component can a�ect the state or
balances in the entire protocol. This is a fragile setup that requires an extremely careful upgrade and
maintainance process. See the issues section for further comments on this.

The codemakes use of revert with error messages which also helps a lot with testing and debugging.

Through the contract proxy, individuals functions can be paused via the multisig, which allows the
team to limit or mitigate damage an issue is found while the protocol is live.

As part of the audit, a call and state graph was generated via in-house tooling, and can be used as a
guide when reading the audit. The graph is at the end of this PDF.

Matthew Di Ferrante 8



bZx Network Smart Contracts Audit by ZK Labs 2018-09-01

Top-level Contracts

BZx.sol

This contract is an interface contract, and has no executable code. The proxy address will be typecast
to this interface.

BZxVault.sol

The bZxVault contract implements an ERC20 and ETH Vault that is controlled the the bZx contract
address. It supports depositing and withdrawing ether and tokens, and calling ERC20 transferFrom
through the EIP20Wrapper interface.

It is ownable, and only maintains the two storage variables inherited by the Ownable contract.

BZxTo0x.sol

The bZxTo0x contract allows the taking/filling of 0x v1 trades from the ZRX contract. It has only 1
non-owner state a�ecting public function, take0xTrade, which only the bZx contract address can
call, and fills a ZRX trade through the vault.

The contract owner has the ability to call the following functions:

• set0xExchange - changes the address of the ZRX contract
• setZRXToken - changes the address of the ZRX token
• set0xTokenProxy - changes the address of the ZRX token proxy
• approveFor - allows the owner to approve amounts for any spender

BZxTo0xV2.sol

The bZxTo0xV2 contract is similar to the bZxTo0x contract, but handles V2 of the 0x protocol instead.
It contains the same set of internal state and owner functions, with the with the only public function
that modifies state being take0xV2Trade, which like before can only be called by the bZx contract
address.

Matthew Di Ferrante 9



bZx Network Smart Contracts Audit by ZK Labs 2018-09-01

Module Contracts

bZxStorage.sol

The bZxStorage contract is mainly composed of struct declarations from the bZxObjects defined in
the same file. This contract is what all state-a�ecting contracts inherit, and variables for all modules
are defined here. Due to the proxy and delegatecall, all these variables are actually held in the proxy
contract’s storage. It is important that the ordering and representation of these variables is kept the
same across deployments and upgrades.

bZxLoanMaintenance.sol

The bZxLoanMaintenance contract is a Proxiable contract that allows participants to “maintain”
their loans by managing collateral, and withdrawing profit, if any. It calls to Oracle_Interface for
price information for calculating profit and loss, and hence also calls the Kyber contracts indirectly.

The only bZxStorage variable this contract manages is loanPositions. The four interface functions
that modify this variable when called are:

• changeCollateral
• depositCollateral
• withdrawProfit
• withdrawExcessCollateral

All four functions also call out to BZxVault and hence a�ect token balances.

As a bZxStorage contract, it uses the proxy’s storage and no storage of its own.

bZxLoanHealth.sol

The bZxLoanHealth contract is a Proxiable contract that allows triggering constraints for loans,
such as margin calls or closing of loans. All functions are callable by any msg.sender such that triggers
can be executed by addresses not part of the trade, the only exception being forceCloanLoan

This contract is also what calls the oracle’s didCloseLoan and hence can trigger the gas refund.
However it canonlydoso insideofforceCloanLoanor_finalizeLoan, and theEMAwill be registered
only if the closing of the loan is valid. With the outlier detection in EMA this provides some protection
against artificially inflating the EMA to trigger high refunds. A byzantine actor could still issuemany
loans and fill them by themselves over and over to inflate the gas price, however this would likely be at
a loss to them overall. The only reason to do this would be to slowly grief the refund pool, but the cost
involvedmeans it is less likely to happen for long periods.

Matthew Di Ferrante 10



bZx Network Smart Contracts Audit by ZK Labs 2018-09-01

As a bZxStorage contract, it uses the proxy’s storage and no storage of its own. The BZxStorage that
this contract a�ects is:

• loanList
• interestPaid
• loanPositions

The functions that a�ect these states directly or indirectly are:

• payInterest
• liquidatePosition
• closeLoan
• forceCloanLoan

The functions that a�ect the state are also capable of a�ecting token balances.

bZxProxyContracts.sol

The bZxProxyContracts contains the Proxiable definition contract and the main bZxProxy
endpoint that manages the forwarding of calls to all subcontracts. bZxProxy also inherits from
bZxStorage and hence keeps all the storage maps for all subcontracts.

The Proxiable interface requires subcontracts have an initialize method defined, which is
through by bZxProxy“s” replaceContractwhen upgrading a contract. It registers which contract
is to be the target of a certain method call.

BZxProxy’s contract owner has the ability to change the addresses/state for:

• bZRxTokenContract
• bZxTo0xV2Contract
• oracleRegistryContract
• vaultContract
• bZxTo0xContract
• targetIsPaused
• targets
• oracleAddresses

bZxOrderTaking.sol

The bZxOrderTaking contract is a Proxiable contract that implements the main lending function-
ality. It is the second-most stateful contract with the largest interface, beaten only by BZxOracle.

Matthew Di Ferrante 11



bZx Network Smart Contracts Audit by ZK Labs 2018-09-01

It allows for taking loands as a trader or lender, cancelling unfilled loans, and retrieving information
about loans, orders and their respective states.

All public functionsa�ect canstateandbalances,with theexceptionofgetUnavailableLoanTokenAmount
.

The BZxStorage that can bemodified by this contract is:

• loanList
• orderLender
• loanPositions
• orderFilledAmounts
• orderList
• orderIndexes
• orderCancelledAmounts
• orderTraders
• orders
• orderFees

The _fillLoanOrder function, reachable by:

• takeLoanOrderAsTrader
• takeLoanOrderOnChainAsTrader
• takeLoanOrerAsLender
• takeLoanOrderOnChainAsLender

Is able to modify balances directly via calls to BZxVault.

This contract depends heavily on the behaviour of the Vault andOracle contracts, and is heavily coupled
to those interfaces.

As with all other Proxiable contracts, bZxOrderTaking does not have any storage of its own.

bZxOrderHistory.sol

This contract is not called by any other state a�ecting contracts. Its only state is inherited fromOwnable
and Proxiable.

bZxTradePlacing.sol

The bZxTradePlacing contract is a Proxiable contract which allows executing trades either via
0x or via the Oracle/Kyber using loaned funds. It either uses the bZxTO0X contract address or the
oracleAddress defined in the order for the trade.

Matthew Di Ferrante 12



bZx Network Smart Contracts Audit by ZK Labs 2018-09-01

Theonly storagea�ected isloanPositions, viabothof thepublic functions,tradePositionWith0x
and tradePositionWithOracle.

As a bZxStorage contract, it uses no storage of its own.

bZxTradePlacing0xV2.sol

This contract is the same as bZxTradePlacing, but for V2 of the 0x protocol. It has only one func-
tion, tradePositionWith0xV2, which a�ects loanPositions and token balances via BZxTo0xV2,
BZxOracle and BZxVault.

Matthew Di Ferrante 13



bZx Network Smart Contracts Audit by ZK Labs 2018-09-01

Oracle Contracts

OracleRegistry.sol

The OracleRegistry contract is a modification of TokenRegistry from ZRX, but extended to keep
track of oracle entities instead of tokens. It supports the same set of getter and setter functions.

bZxOracle.sol

The bZxOracle contract provides price feed data and records events that happen in the protocol. It is
also not upgradeable as easily as the rest of the contracts, it requires entries in the oracle registry and
loans are always associated to a specific oracle. It is the most stateful contract in the protocol, with the
highest number of state a�ecting functions, and the highest coupling to all other modules.

The majority of the functions are either only-owner setters, or in the case of the did prefix functions,
just record return true with a gas price EMAmodifier attached. The owner is also able to transfer ether
and tokens out of the oracle.

The main functionality of the Oracle is to provide margin, profit/loss and price information, and act as
an interface to the Kyber Network’s trading platform.

The functions that interact with Kyber are:

• doTrade
• doManualTrade
• getTradeRate
• verifyAndLiquidate
• getProfitOrLoss
• getCurrentMarginAmount
• processCollateral

Other functions that transfer tokens or ETH:

• didPayInterest
• didCloseLoan
• processCollateral
• transferToken

This contract contains a mechanism that gives a gas refund for calling a liquidation. This is only ever
called by BZxLoanHealth, see that section for more analysis.

Note: It is best practice to use active only verb prefixes for functions that a�ect state. Functions like
“didX” have passive tense and “sound” like getters. The codebase is more robust when there is clear

Matthew Di Ferrante 14



bZx Network Smart Contracts Audit by ZK Labs 2018-09-01

separation between accessors and modifiers. Replacing the “magic number” 0xcb3c28c7 for the
KyberNetwork function call to a keccak would also be preferable, since it is resolved at compile time
and does not impose a gas penalty.

Matthew Di Ferrante 15



bZx Network Smart Contracts Audit by ZK Labs 2018-09-01

Modifier/support Contracts

InternalFunctions.sol

This contract contains various support functions used bymany of the module contracts. It does not
contain any functions that directly a�ect state, and it does not contain any state itself.

GasRefunder.sol

The GasRefunder contract implements a modifier that refunds the caller the gas cost of execution in
ETH. The modifiers defined in this contract are not used.

The only function in this contract that is used is sendRefund, which is called by BZxOracle.

GasTracker.sol

The GasTracker contract defines a modifier that records the amount of gas le� when the function is
entered. The value is stored inside an internal gasUsed variable, which is zeroed out at the end of the
function’s execution.

EMACollector.sol

The EmaCollector contract defines a modifier that updates an estimatedmoving average counter
according to the following equation:

NewEmaValue = ((value / (emaPeriods + 1)* 2)+ emaValue)- (emaValue / (
emaPeriods + 1)* 2)

The actual contract uses safemath to perform this operation.

A mechanism to prevent outliers from being recorded is also used, with the formula being as follows:

if gasprice is >= 2x + 5 gewi above the current EMA then don't register

Hence a byzantine actor cannot artificially increase the gas price EMA very sharply in a short amount of
time, they must do it over many valid transactions which is far more costly.

bZxOwnable.sol

This contract is an extension of Zeppelin’s Ownable contract, adding a onlybZxmodifier that throws
if the caller is not the bZx contract address.

Matthew Di Ferrante 16



bZx Network Smart Contracts Audit by ZK Labs 2018-09-01

Token Contracts

EIP20.sol

This contract only defines ERC20 variable names for name, decimals and symbol accessors.

TokenRegistry.sol

This contract implements a Token Registry. It has been sourced from the 0x repository.

EIP20Wrapper.sol

The EIP20Wrapper contract is a wrapper around ERC20 token interface functions. It supports 3 ERC20
constructs, transfer, approve, and transferFrom, and takes a token as an argument for the target
of the function calls.

BaseToken.sol

This contract is an instantation of UnlimitedAllowanceTokenwith BurnableToken support. Upon
the creation of the contract, the entire balance is assigned to the contract creator address.

UnlimitedAllowanceToken.sol

UnlimitedAllowanceToken implements an ERC827 token which is an ERC20 with the ability for
setting unlimited allowance for an address by calling approvewith UINT_MAX as an argument.

Matthew Di Ferrante 17



bZx Network Smart Contracts Audit by ZK Labs 2018-09-01

Testing

Test coverage is adequate, with end to end tests and examples with specific focus on token interaction.
The main recommendation in regards to testing would be to split up the tru�le file in the future so that
it isn’t one monolithic test file.

Findings

We found the following issues to be aware of.

Main Proxy uses DelegateCall and a single storage point, whichmakes upgrades fragile if not
done correctly

• Likelyhood: medium
• Impact: high

Depending on compiler versions, or upgrades to contract functionality, it is possible that the storage
contained inside the proxy gets mangled due to di�ering storage representations. We advise the bZx
team to be extremely careful and test any upgrades on a fork of the mainnet using the same compiler
versions when possible, to avoid surprises or destruction of state on the live contracts.

DelegateCall + Proxy combination gives bZx team high level of control over the protocol

• Likelyhood: low
• Impact: high

A contract upgrade can change the state in Proxy arbitrarily, hence can change the state for any protocol
contracts arbitrarily - this includes all balances since the proxy has the ability to call the vault. At the
time of writing, the bZx team have made the owner of the protocol contracts a multisig with enforced
28 day delay for critical functions, and 14 day delay for the rest. Since the platform relies on 0x and the
0x network itself has the samemechanic (time delay multisig that can change protocol parameters),
the threat model is e�ectively the same as 0x itself.

Matthew Di Ferrante 18



BZx State Graph

BZxLoanHealth

Ownable

Proxiable

InternalFunctions

BZxLoanHealth State

BZxTo0xV2_Interface

EMACollector

EMACollector State

GasTracker

GasTracker State

BZxTo0x_Interface

OracleInterface

ReentrancyGuard

ReentrancyGuard State

BZxTo0x

Ownable

BZxOwnable

EIP20Wrapper

BZxTo0x State

BZxTradePlacing0xV2

Ownable

Proxiable

BZxTradePlacing0xV2 State

ExchangeV2Interface

OracleRegistry

Ownable

OracleRegistry State

BZxVault

Ownable

BZxOwnable

EIP20Wrapper

BZxVault State

ExchangeInterface

BZxOrderHistory

Ownable

Proxiable

InternalFunctions

BZxOrderHistory State

GasRefunder

BZxProxy

Ownable

Proxiable

BZxProxy State

KyberNetwork_Interface

BZxLoanMaintenance

Ownable

Proxiable

InternalFunctions

BZxLoanMaintenance State

WETH_Interface

ZeroExV2Helper

LibEIP712

ZeroExV2Helper State

BZxOrderTaking

Ownable

Proxiable

InternalFunctions

BZxOrderTaking State

BZxOracle

Ownable

EMACollector

BZxOwnable

GasRefunder

EIP20Wrapper

BZxOracle State

BZxTo0xV2

Ownable

BZxOwnable EIP20Wrapper

BZxTo0xV2 State

BZxTradePlacing

Ownable

Proxiable

InternalFunctions

BZxTradePlacing State

withdrawToken eip20Transfer

onlyBZx

_tradePositionWithOracle

setGasUpperBound

gasUpperBound

onlyOwner

_addExtraOrderData

renounceOwnership

owner (Ownable)

getLoanOrderHash

getExpectedRate

getOracleList strConcat

oracleByName

fallback

owner (Ownable)

oracleAddresses

getOrderValuesFromData

setMinimumCollateralInEthAmount minimumCollateralInEthAmount

fallback

EIP712_DOMAIN_HASH (LibEIP712)

setManualTradingAllowed isManualTradingAllowed

calculateAndSendRefund sendRefund

_doTrade

withdraw

_transferToken

eip20Approve

trade

owner (Ownable)

_transferOwnership

owner (Ownable)

_emitMarginLog

approveFor

eip20Approve

_getMarginLevels

updateEMA emaValue

initialize

getTradeRate

_getExpectedRate

_getPartialAmountNoError

_doTradeForEth

_transferEther

_getPartialAmount

transferOwnership

setEMAPeriods emaPeriods (EMACollector)

loanPositions (BZxStorage)

renounceOwnership

owner (Ownable)

_closeLoan

loanPositions (BZxStorage)

_tradePositionWithOracle

_finalizeLoan

_isRoundingError

setDebugMode

DEBUG_MODE (BZxStorage)

_addLoanOrder

orders (BZxStorage)

orderFees (BZxStorage)

_verifyNewLoanOrder

_buildLoanOrderStruct

getProfitOrLoss

_getPartialAmount

isValidSignature

_isValidSignature

transferOwnership

_take0xV2Trade

fillOrderNoThrow

marketSellOrdersNoThrow

eip20TransferFrom

eip20Approve

doManualTrade

depositToken eip20TransferFrom

transferBZxOwnership

bZxContractAddress (BZxOwnable)

setOracleRegistry

oracleRegistryContract (BZxStorage)

isTradeSupported

didCloseLoan

calculateAndSendRefund

updatesEMA

_transferOwnership

owner (Ownable)

transferOwnership

withdrawExcessCollateral

tracksGas

didWithdrawCollateral

_getInitialCollateralRequired

nonReentrant

addressNotNull

depositCollateral

didDepositCollateral

isTradeSupported

loanList (BZxStorage)

initialize

targets (Proxiable)

gasUsed

getInitialCollateralRequired
_getInitialCollateralRequired

initialize

targets (Proxiable)

_getSignatureParts

bZRxTokenContract

fallback

bZRxTokenContract (BZxStorage)

getMarginLevels _getMarginLevels

set0xV2Exchange

exchangeV2Contract

bZxContractAddress (BZxOwnable)

_getTotalInterestRequired

setBZRxTokenContractAddress

fallback

renounceOwnership

shouldLiquidate getCurrentMarginAmount

_transferOwnership

didCloseLoan

_isRoundingError

didDepositCollateral

tradePositionWith0x

didTradePosition

_emitMarginLog

take0xTrade

loanPositions (BZxStorage)

shouldLiquidate

takeLoanOrderAsLender

_takeLoanOrder

transferOwnership

fallback owner (Ownable)

getInterest

_getInterest

getOrdersFillable

_getOrdersForAddress

transferOwnership

getSignatureParts

erc20ProxyContract

_transferOwnership

owner (Ownable)

liquidatePosition

_emitMarginLog

fallback

_payInterest

interestPaid (BZxStorage)

didPayInterest

toggleTargetPause

targetIsPaused (Proxiable)

_transferOwnership

getLoansForTrader

_getLoanPositions

transferOwnership

bZxTo0xV2Contract (BZxStorage)

setZRXToken

zrxTokenContract

guardCounter

processCollateral

transferEther

eip20Transfer

fallback

_getInterest

_tradePositionWithOracle

hashEIP712Message

getV2Tokens

hashOrder

_getMarginLevels

transferOwnership

setBZxAddresses

bZxTo0xContract (BZxStorage)

vaultContract (BZxStorage)

take0xV2Trade

eip20Transfer

getPartialAmount

renounceOwnership

_getPartialAmount

_tradePositionWithOracle

fallback

minInitialMarginAmount

refundsGas

shouldLiquidate

wethContract

orderCancelledAmounts (BZxStorage)

cancelLoanOrder

_cancelLoanOrder

_replaceContract

setKyberContractAddress kyberContract

DEBUG

loanPositions (BZxStorage)

oracleExists

sendRefund

_verifyExistingLoanOrder

orderIndexes (BZxStorage)

orderList (BZxStorage)

_removeLoanOrder

getOrderHash

didWithdrawCollateral

take0xV2Trade

fallback

addOracle

oracles

oracleDoesNotExist

nameDoesNotExist

eip20Transfer

_transferOwnership

owner (Ownable)

_getInitialCollateralRequired

updateEMA

emaValue (EMACollector)

_getPartialAmount

fallback

forceCloanLoan

replaceContract

renounceOwnership

didTradePosition

_doTradeWithEth

renounceOwnership

_transferOwnership

doTrade

setInterestFeePercent interestFeePercent

exchangeContract

changeCollateral

didChangeCollateral

_emitMarginLog

approveFor

bZxContractAddress (BZxOwnable)

transferOwnership

fillOrdersUpTo

isValidSignature

_tradePositionWithOracle

transferOwnership

owner (Ownable)

_getInterest

fallback

fallback

_getInterest

_fillLoanOrder

_getPartialAmountNoError

transferTokenFrom

_getTotalInterestRequired

transferBZxOwnership

fallback

orderFilledAmounts (BZxStorage)

_getPartialAmountNoError

_transferOwnership

_take0xTrade

eip20TransferFrom

fillOrder

transferOwnership

takeLoanOrderOnChainAsLender

setOracleReference

oracleAddresses (BZxStorage)

set0xTokenProxy

tradePositionWithOracle

setOracleName

_isRoundingError

transferToken

_replaceContract

hasOracle

getPartialAmount

fallback

withdrawEther

_addExtraLoanData

setMarginThresholds minMaintenanceMarginAmount

transferBZxOwnership

_getInterest

targets (Proxiable)

getOracleAddresses

didPayInterest

targets (Proxiable)

takeLoanOrderOnChainAsTrader

loanPositions (BZxStorage)

didWithdrawProfit

set0xV2ExchangeWrapper

take0xTrade

getCurrentMarginAmount

getTarget

fallback

owner (Ownable)

getOracleMetaData

getOrdersForUser

_replaceContract

setBZRxToken

getLoansForLender

doTrade

getTradeRate

deposit

payInterest

setVaultContractAddress

vaultContract

_getTotalInterestRequired

withdrawProfit

didWithdrawProfit

_getProfitOrLoss

tradePositionWith0xV2

_replaceContract

_replaceContract

renounceOwnership

fallback

orderLender (BZxStorage)

transferOwnership

getTargetPause

_getMarginLevels

loanList (BZxStorage)

didTakeOrder

orderTraders (BZxStorage)

setEMAValue

fallback

getProfitOrLoss

targets (Proxiable)

renounceOwnership

tokenTransferProxyContract

verifyAndLiquidate

eip20Approve

isValidSignature

getSingleLoan

setWethContractAddress

removeOracle

owner (Ownable)

eip20TransferFrom

initialize

_getInitialCollateralRequired

didChangeCollateral

getProfitOrLoss

takeLoanOrderAsTrader

_getPartialAmountNoError

_getInitialCollateralRequired

setBountyRewardPercent bountyRewardPercent

renounceOwnership

getActiveLoans

fallback

initialize

targets (Proxiable)

_getTotalInterestRequired

renounceOwnership

verifyAndLiquidate

pushLoanOrderOnChain

fallback

getUnavailableLoanTokenAmount

set0xExchange

refundsGasAfterCollection

_getPartialAmount

_getTotalInterestRequired

_transferOwnership

_replaceContract

_transferOwnership

transferOwnership

renounceOwnership

bZxContractAddress (BZxOwnable)

_isRoundingError

fallback

fallback

set0xTokenProxy

getOracleByName

_transferOwnership

closeLoan

toggleDebug

zrxTokenContract

initialize

getOracleAddressByName

_transferOwnership

fallback

doManualTrade

_replaceContract

processCollateral

setZRXToken

targets (Proxiable)

fallback

_isRoundingError

set0xExchangeWrapper

didTakeOrder

initialize

_getPartialAmountNoError

fallback

getSingleOrder

_getMarginLevels

_emitMarginLog

renounceOwnership

setVault

fallback

setTarget

transferBZxOwnership


