

9 Wardens contributed reports to the Connext code contest:

¢ OxRajeev

e paulius.eth

e cmichel

e shw

e gpersoon

e Oxsanson

e sTm0

e hrkrshnn

e GalloDaSballo

e greiart

This contest was judged by ghoul.sol.

Final report assembled by moneylegobatman and ninek.

Summary

The C4 analysis yielded an aggregated total of 18 unique vulnerabilities. All of the
issues presented here are linked back to their original finding

Of these vulnerabilities, 5 received a risk rating in the category of HIGH severity, 2
received a risk rating in the category of MEDIUM severity, and 11 received a risk rating
in the category of LOW severity.

C4 analysis also identified 18 non-critical recommendations.

Scope

The code under review can be found within the C4 Connext code contest repository is
comprised of 6 smart contracts written in the Solidity programming language.

Severity Criteria

C4 assesses the severity of disclosed vulnerabilities according to a methodology
based on OWASP standards.

Vulnerabilities are divided into three primary risk categories: high, medium, and low.

High-level considerations for vulnerabilities span the following key areas when
conducting assessments:

e Malicious Input Handling
e Escalation of privileges
e Arithmetic

e (Gas use

Further information regarding the severity criteria referenced throughout the
submission review process, please refer to the documentation provided on the C4
website.

High Risk Findings (5)

[H-01] ANYONE CAN ARBITRARILY ADD ROUTER LIQUIDITY

Submitted by OxRajeev, also found by cmichel and pauliax

The [addLiquidity()] function takes a router address parameter, whose liquidity is
increased (instead of assuming that | router‘] == [msg. sender‘] like is done on
[removeLiquidity() |) on this contract/chain, by transferring the fund amount from
router address to this contract if I= 0 (i.e. ERC20 tokens). However, anyone
can call this function on the router’s behalf. For == 0, the Ether transfer via
[msg.value | comes from [msg. sender | and hence is assumed to be the router itself.

The impact is that this will allow anyone to call this function and arbitrarily move
ERC20 tokens from router address to this contract, assuming router has given max

assetID

[TransactionManager.sol]

msg.sender] [removeLiquidity]

’msg.sender] ‘addLiquidity()]

‘msg.sender

msg.sender] [addLiquidity]

{removeUserActiveBlocksJ

activeTransactionBlocks]

[activeTransactionBlocks]

prepare

‘activeTPansactionBlocks’

[PemoveUserActiveBlocks}

‘EnumerableMap]

[activeTransactionBlocks

EnumerableMap

[removeUserActiveBlocks][EnumerableMap

fulfill()

‘txData.callTo [IFulFillHelper.addFunds()’
‘IFulfillHelper.excute()] [transferAsset’
[txData.receivingAddress]

‘addFunds()’ toSend

[receivingAddress] ‘execute()’

‘txData.callTo]

addFunds () ' execute()
[receivingAddr‘essJ
tokenAs

‘TransactionManager.sol’

[transferAsset()]

[receivingAssetId’ ‘sendingChain

[sendingAssetID’

‘receivingAssetId]

‘sendingAssetID] [receivingAssetId]

[PeceivingAssetId] [sendingAssetId

transferAsset()’ [TransactionManager.sol’

Fulfill callTo
[IFulfillHelper|

| // First, approve the funds to the helper if needed
if (!LibAsset.isEther(txData.receivingAssetId) && toSend > 9) {
require(LibERC20.approve(txData.receivingAssetId, txData.callTo, tc

}

// Next, call “addFunds® on the helper. Helpers should internally
// track funds to make sure no one user is abhle to take all funds

// for tx
if (toSend > 0) {
try
IFulfillHelper(txData.callTo).addFunds{ value: LibAsset.isEther(t
txData.user,
txData.transactionld,
txData.receivingAssetlId,
toSend

)
{} catch {
// Regardless of error within the callData execution, send funds
// to the predetermined fallback address
require(
LibAsset.transferAsset(txData.receivingAssetld, payable(txData.
"fulfill: TRANSFER_FAILED"

)5
}
}

[PecoverFulfillSignature()’

[hashInvaPiantTransactionData(txData)’

Fulfill()

accidentally/intentionally replayed with same transaction ID, which also appears to be
an outstanding question as indicated by the comment on L12.

[recoverCancelSignature() |simi|ar|y uses only tx ID.

Unless there is a good reason not to, it is safer to include
[hashInvariantTransactionData(txData)] in signatures so that they cannot be
replayed with different txData (but same tx ID) whose [pr'epar‘edBlockNumber' is>0.

Recommend evaluating if the signature should contain only tx ID, or the entire digest,
and then changing the logic appropriately.

LayneHaber (Connext) acknowledged:

User should be able to break up large transfers across multiple routers using
the same [transactionIdlto keep the transaction unlocking atomic. For
example, say | want to transfer S100K, but there are only 8 routers who each
have $60K available. | should be able to break up the single transaction into
S20K transactions split across 5 of the routers. When unlocking this, | should

only need to broadcast a single signature, so all of the transactions can be
unlocked simultaneously.

ghoul-sol (Judge) commented:

Bumping to medium risk as replay attack can have significant consequences

[M-02] MALICIOUS ROUTER CAN BLOCK CROSS-CHAIN-
TRANSFERS

Submitted by OxRajeev, also found by cmichel and shw

The agreement between the and the | router | seems to already happen off-
chain because all the fields are required for the initial [In variantTransactionData

call already. A router could pretend to take on a user’s cross-chain transfer, the user
sends their | prepare | transaction, locking up funds on the sending chain. But then the

router | simply doesn’t respond or responds with a transaction of
H

mount=0|

The user’s funds are then locked for the entire expiry time, whereas the router does not
have to lock up anything as the amount is 0, even no gas if they simply don't respond.

In this way, a router can bid on everything off-chain without a penalty, and take down
everyone that accepts the bid.

Recommend that maybe there could be a penalty mechanism for non-responsive
routers that agreed off-chain, slashing part of their added liquidity. Could also be that
the bid signature already helps with this, but I'm not sure how it works as the off-chain
part is not part of the repo.

LayneHaber (Connext) acknowledged:

This is true, and we are building penalty mechanisms outside of these
contracts. For now we are considering adding in a permissioned launch, see
#49

Low Risk Findings (11)

[L-01] LACK OF GUARDED LAUNCH APPROACH MAY BE
RISKY

Submitted by OxRajeev, also found by pauliax

The protocol appears to allow arbitrary assets, amounts and routers/users without an
initial time-bounded whitelist of assets/routers/users or upper bounds on amounts.
Also, there is no pause/unpause functionality. While this lack of ownership and control
makes it completely permission-less, it is a risky design because if there are latent
protocol vulnerabilities there is no fallback option. See Derisking DeFi Guarded Assets.

Recommend considering an initial guarded launch approach to owner-based
whitelisting asset types, router/recipient addresses, amount thresholds, and adding a
pause/unpause functionality for emergency handling. The design should be able to
make this owner configurable, where the owner can renounce ownership at a later
point when the protocol operation is sufficiently time-tested and deemed stable/safe.

LayneHaber (Connext) confirmed and patched:

https://github.com/connext/nxtp/pull/40

‘TransactionManager’

routerBalancesJ [TransactionManager.sol]

luint256 balanceBefore = getOwnBalance(assetId);
require(LibERC20.transferFrom(assetId, router, address(this), amount, "addLic
uint256 receivedAmount = getOwnBalance(assetId) - balanceBefore;

// Update the router balances
routerBalances[router][assetId] += receivedAmount;]

addLiquidity()]

‘removeLiquidity()]

laddLiquidity() |

[token.transfer()’
[transferEth()]

addr.call(value) | removeLiquidity()]

The checks may be more important because | assetID | is O for Eth. So a router may
accidentally use 0 values for both|assetID | and router/recipient.

There is also a missing zero-address check on [sendingChainFallback]which is

relevant for Eth transfers in . The comment on L178 indicates the need for

this but the following check on L179 ends up checking [receivingAddressJ instead

(which is also necessary). See issue page for referenced code.
Recommend adding zero-address checks.
sanchaymittal (Connext) confirmed and patched:

https://github.com/connext/nxtp/pull/32

[L-04] AN ATTACKER CAN FRONT-RUN A USER’S
PREPARE() TX ON SENDING CHAIN TO CAUSE DOS BY
GRIEFING

Submitted by OxRajeev, also found by cmichel

The | pr‘epar‘e()]function hashes the invariantData parameter data to check the
mapping entry is 0 for that digest as a measure to prevent duplicate [pr-epare()]s.
However, an attacker can abuse this check to front-run a targeted victim'’s prepare Tx

with the same parameters and with some dust amount to prevent the user’s actual
prepare Tx from succeeding.

The impact of this the potential griefing attack vector if user address is not

[msg. sender]. This is with the assumption that relayers are only relevant on the
receiving side where the user may not have the [receivingAssetId | i.e. no reason for
[msg. sender | of| pr‘epar‘e()] to be the relayer and not the user.

Recommend adding |msg. sender] == | invariantData.user | check on sending chain
side similar to the check for router address on the receiving side.

LayneHaber (Connext) confirmed and patched:
https://github.com/connext/nxtp/pull/42

LayneHaber (Connext) acknowledged:

[txData.expir‘y] ‘block.timestampJ

| // Make sure the expiry has not elapsed
require(txData.expiry > block.timestamp, "fulfill: EXPIRED");] v

cancel

| if (txData.expiry >= block.timestamp) {

// Timeout has not expired and tx may only be cancelled by router] v
txData.expiry}
block.timestamp
[LIibERCZ@.approve
[safeApprove]

|require(LibERC20.approve(txData.receivingAssetId, txData.callTo, toSend), "f 2

1 . ~ [~ —

« I »

Recommend that | LiibERC20@. approve] should do two | approve | calls, one setting it
to|@|first, then the real one. Check OpenZeppelin’s | safeApprove].

LayneHaber (Connext) confirmed and patched:

https://github.com/connext/nxtp/pull/22

[L-07] ROUTER NEEDS TO DECREASE EXPIRY BY A
SIGNIFICANT BUFFER

Submitted by cmichel

The user’s signature on the receiving chain is at the same time used by the
router as a way to claim their amount on the sending chain. If the sending chain’s
date has passed, the user can cancel this side of the transfer and claim back
their deposit before the router can claim it. Therefore, the comment that the receiving
chain’s expiry needs to be decreased is correct:

// expiry should be decremented to ensure the router has time to complete
the sender-side transaction after the user completes the receiver-side
transactoin.

However, this is not enforced and if a wrong expiry date is chosen by the router, or the
sender congests the network long enough such that the router’s | fulfill |transaction
does not get through, the router loses their claim and the user gets a free cross-chain

transfer.

would be possible to entorce that receivingSide.expiry + buffer <
sendingSide. expir‘y] if the original expiry was part of the invariant data. This would
programmatically avoid errors like the ones mentioned. (Assuming all supported
chains use the same way to measure time / use UNIX timestamps.)

LayneHaber (Connext) acknowledged:

This is true, but the router is definitely incentivized to do this correctly.
Adding this would also require adding an additional

| {MINIMUM/MAXIMUM} BUFFER | o1 increases the complexity of the
contracts for relatively minimal benefit

[PeturnData.length’ abi.decode(returnData,

(bool));

|// https://github.com/code-423n4/2021-07-connext/blob/main/contracts/1ib/Lib
function wrapCall(address assetld, bytes memory callData) internal returr

(bool success, bytes memory returnData) = assetId.call(callData);
LibUtils.revertIfCallFailed(success, returnData);
return returnData.length == @ || abi.decode(returnData, (bool));

return returnData.length == @ || abi.decode(returnData, (bool));l =

return (returnData.length == @) || (returnData.length == 1 && abi.decode(ret &
»

[MIN_TIMEOUT
MAX_TIMEOUT |

MAX_TIMEOUT

https://github.com/connext/nxtp/pull/30

[L-10] UNCHANGEABLE CHAINID INFORMATION

Submitted by shw

The information included in the [Tr‘ansactionManager‘] is immutable, i.e., it
could not change after the contract is deployed. However, if a hard fork happens in the

future, the contract would become invalid on one of the forked chains because the
cham D has changed. See|TransactionManager. sol] L73 and L79.

Recommend adding a function that allows the admin to set the variable if a
hard fork happens.

LayneHaber (Connext) acknowledged:

This is a potential issue in the case of a hard fork, but we will not address it
for the following reasons:

1. It is reasonable to assume the participants will want their funds to
remain consistent on the canonical chain, which should keep the same

in the event of a fork

2. Creating an admin function to reset the gives admins a huge
amount of power over the system itself

3. There would still be a race between hard fork activation and updating

the that could result in unpredictable transaction behavior

Instead, the course of action is to redeploy the contracts with the correct

ehainie)

[L-11] RELAYER TXS CAN BE FRONT-RUNNED

Submitted by pauliax

There is no relayer address param, only | r‘elayer'Fee], so technically anyone can front-
run a profitable tx. The scenario might be as follows: A relayer submits a tx. A
frontrunner sees it in the mempool and calculates that [relayer‘Fee | is profitable
enough (maybe even insta sell the [r'elayer‘Fee] on AMM for the native asset) so he

copies and submits the same tx but with a higher gas price. A frontrunner’s tx gets
through and a relayer’s tx is reverted afterward. So basically a relayer will experience
only losses in such a case.

Recommend consider introducing relayer address param or reducing the probability of
this scenario in any other meaningful way (e.g. blacklist front-runners).

LayneHaber (Connext) acknowledged:

This does technically introduce some frontrun-ability for the relayer fee on
the onchain transactions, but relegating the responsibility to a single relayer
within the network could compromise the overall network security.

Consider the following case where a relayer is selected:

1. User has a|fulfill |transaction they would like to be submitted on the
receiving chain

2. User selects a who will submit a tx for a fee

3. User sends the | relayer | the transaction data to submit the tx,
including the [signature] on the receiving chain

4. The can see the on the transaction, and they collude

to submit the signature on the sending chain, wait to cancel the
transaction on the receiving chain, and split the profits.

While the relayer fees are frontrunnable, and this will drive up the costs of the
relayer fees for all users, switching away from this pattern will force an “all
honest relayers” assumption instead of a “one honest relayer” assumption.

ghoul-sol (Judge) commented:

Making this a low risk as the front running doesn'’t affect users and it actually
forces the whole system to use the most optimal fees.

Non-Critical Findings

[N-01] MISSING @aPARAM IN FULFILL NATSPEC

fulfill

callData’ [TransactionManager.sol’

[hashVariantTransactionData

‘VariantTransactionData]

| variantTransactionDataldigest] = keccak256(abi.encode(VariantTransaction
amount: txData.amount,
expiry: txData.expiry,
preparedBlockNumber: ©
1));|

‘VariantTransactionData’ ‘preparedBlockNumber}

| function hashVariantTransactionData(TransactionData calldata txData) inter
return hashVariantTransaction(txData.amount, txData.expiry, txData.prepar

}

function hashVariantTransaction(uint256 amount, uint256 expiry, uint256 pre
return keccak256(abi.encode(VariantTransactionData({
amount: amount,
expiry: expiry,
preparedBlockNumber: preparedBlockNumber

1))

)

variantTransactionDataldigest] = keccak256(abi.encode(VariantTransaction
amount: txData.amount,
expiry: txData.expiry,
preparedBlockNumber: ©

1)))s | v

variantTransactionData[digest] = hashVariantTransaction(txData.amount, t <
»

PevertIfCallFailed’ [LibUtils.sol

‘LibUtils.sol|

| function revertIfCallFailed(bool success, bytes memory returnData) internal
if (!success) {
assembly { revert(add(returnData, ©x20), mload(returnData)) }

}

— :

‘hashVariantTransactionData()’

‘hashInvariantTransactionData()]

|function hashVariantTransactionData(TransactionData calldata txData) interna
VariantTransactionData memory variant = VariantTransactionData({
amount: txData.amount,
expiry: txData.expiry,
preparedBlockNumber: txData.preparedBlockNumber

B

return keccak256(abi.encode(variant));

|ETHER_ASSETID|
[NATIVE_ASSETID | |ETHER_ASSETID

|// The structure of the signed data for cancellations
struct SignedFulfillData {]

[MIN_TIMEOUT

| uint256 public constant MIN_TIMEOUT = 1 days; // 24 hours

r‘ecover‘CancelSignatur‘e’ ‘r‘ecover*Ful*FillSignatur*e

'require(recoverCancelSignature(txData, relayerFee, signature) == txData.user
require(recoverFulfillSignature(txData, relayerFee, signature) == txData.user~
3

|require(msg.sender == txData.user | recoverCancelSignature(txData, relayerFe
require(msg.sender == txData.user || recoverFulfillSignature(txData, relayerf~
3

Gas Optimizations (12)

[G-01] USING ACCESS LISTS CAN SAVE GAS DUE TO EIP-
2930 POST-BERLIN HARD FORK

Submitted by OxRajeev

EIP-2929 in Berlin fork increased the gas costs of SLOADs and CALL* family opcodes,
increasing them for not-accessed slots/addresses and decreasing them for accessed
slots. EIP-2930 optionally supports specifying an access list (in the transaction) of all
slots and addresses accessed by the transaction, which reduces their gas cost upon
access and prevents EIP-2929 gas cost increases from breaking contracts.

The impact of this is that, these changes may significantly impact gas usage for
transactions that call functions touching many state variables or making many external

calls. Specifically, | removeUserActiveBlocks() |removes an active block from the

array of blocks for an user, all of which are stored in storage. Transactions for
[fulfill O | and [cancel()] functions that call | removeUserActiveBlocks() J can
consider using access lists for all the storage state (of user’s active blocks) they touch
(read + write) to reduce gas.

Recommend evaluating the feasibility of using access lists to save gas due to EIPs
2929 & 2930 post-Berlin hard fork. The tooling support is WIP.

LayneHaber (Connext) confirmed and patched:

Removed tracking of active blocks: https://github.com/connext/nxtp/pull/24

[G-02] CACHE STORAGE VARIABLES TO LOCAL VARIABLES
TO SAVE GAS

Submitted by shw;, also found by OxRajeev

In general, if a state variable is read more than once, caching its value to a local
variable and reusing it will save gas since a storage read spends more gas than a
memory write plus a memory read.

[TransactionManager.sol]

luint256 balance = routerBalances[msg.sender][assetId];
require(balance >= amount, "removelLiquidity: INSUFFICIENT_FUNDS");

// Update router balances
routerBalances[msg.sender][assetId] = balance - amount;} N

[TransactionManager.sol]

luint256 balance = routerBalances[invariantData.router][invariantData.receivi
require(

balance >= amount,

"prepare: INSUFFICIENT_LIQUIDITY"

)5

// Decrement the router liquidity

routerBalances[invariantData.router][invariantData.receivingAssetId] = balanc~
»

delegatecall]
LibUtils.revertIfCallFailed() |

revertIfCallFailed()J

[G-04] CONSOLIDATING LIBRARY FUNCTIONS CAN SAVE
GAS BY PREVENTING EXTERNAL CALLS

Submitted by OxRajeev

While code modularity is generally a good practice and creating libraries of functions
commonly used across different contracts can increase maintainability and reduce
contract deployment size/cost, it comes at the increased cost of gas usage at runtime
because of the external calls. EIP-2929 in Berlin fork increased the gas costs of CALL*
family opcodes to 2600. Making a [delegatecall]to a library function therefore costs
2600.

The impact is that, |L1bAsset tr'ansfer‘Asset()]caII from

TransactlonManager sol]makes LibERC20.transfer() 'call for ERC20 which in
turn makes another external call to [leUtlls . revertIfCallFalled()] in
wrapCall | So an ERC20 transfer effectively makes 3 additional (besides the ERC20

token contract function call [assetId .call(..) |externa| calls > |LibAsset| -

(LibERC20| - [LibUtils | which cosie 260070 = 7800 gas,

Combining these functions into a single library or making them all internal to
[Tr'ansactionManager. sol] can convert these [delegatecall]s into JMPs to save
gas. See issue page for referenced code.

Recommend considering moving all the library functions internal to this contract, or to
a single library, to save gas from external calls, each of which costs 2600 gas.

LayneHaber (Connext) confirmed and patched:

https://github.com/connext/nxtp/pull/22

[G-05] EVALUATE SECURITY BENEFIT VS GAS USAGE
TRADE-OFF FOR USING NONREENTRANT MODIFIER ON
DIFFERENT FUNCTIONS

Submitted by OxRajeev

While it may be considered extra-safe to have a nonreentrant modifier on all functions
making any external calls even though they are to trusted contracts, when functions

implement Checks-Effects-Interactions (CEl) pattern, it is helpful to evaluate the
perceived security benefit vs gas usage trade-off for using nonreentrant modifier.

Functions adhering to the CEl pattern may consider not having the nonreentrant
modifier which does two | SSTORES| (getting more expensive with the London fork EIP-

3529) to its |_status | state variable.

Example 1: In | addLiquidity()], by moving the updating of router balance on L1071 to
before the transfers from L92, the function would adhere to CEl pattern and could be
evaluated to remove the nonreentrant modifier.

Example 2: | removelLiquidity() | already adheres to CEl pattern and could be
evaluated to remove the nonreentrant modifier.

[pr'epar*e()] can be slightly restructured to follow CEl pattern as well. However,
[fulfill() | and [cancel()] are risky with multiple external calls and its safer to leave
the nonreentrant call at the expense of additional gas costs.

The impact is that, you can save gas by removing the nonreentrant modifier if function
is deemed to be reentrant safe. This can save gas costs of 2 SSTORES per function
call that uses this modifier: _status SSTORE from 1 to 2 costs 5000 and _status
SSTORE from 2 to 1 which costs 100 (because it was already accessed) which is
significant at 5100 per call post-Berlin EIP-2929. See | TransactionManager. sol] L92-
L101.

Recommend evaluating security benefit vs gas usage trade-off for using nonreentrant
modifier on functions that may already be reentrant safe or do not need this protection.
It may indeed be safe to leave this modifier (while accepting the gas impact) if such an
evaluation is tricky or depends on assumptions.

LayneHaber (Connext) confirmed and patched:

https://github.com/connext/nxtp/pull/44

[G-06] USE THE UNCHECKED KEYWORD TO SAVE GAS

Submitted by shw, also found by OxRajeev, cmichel, greiart, and sTm0

Using the [unchecked] keyword to avoid redundant arithmetic underflow/overflow
checks to save gas when an underflow/overflow cannot happen.

unchecked

'unchecked {
uint256 toSend = txData.amount - relayerFee;

1] v

| import "./interfaces/IFulfillHelper.sol";
import "./interfaces/ITransactionManager.sol";
@@ -556,6 +556,12 @@ contract TransactionManager is ReentrancyGuard, ITransac
return activeTransactionBlocks[user];

}

function unchecked inc(uint256 i) internal pure returns (uint256) {
unchecked {
return 1 + 1;

}
}

+ + + + + |+

[117177777777777711777777717
/// Private functions ///
[117177777717777117717717717
@@ -570,7 +576,7 @@ contract TransactionManager is ReentrancyGuard, ITransact
uint256[1 memory updated = new uint256[](newLength);
bool removed = false;
uint256 updatedIdx = 0;
- for (uint256 i; i < newLength + 1; i++) {
+ for (uint256 i; i < newLength + 1; i = unchecked inc(i)) {
// Handle case where there could be more than one tx added in a block
// And only one should be removed
if (!removed && activeTransactionBlocks[user][i] == preparedBlock) {] N
>

‘unchecked]

[EnumerableSet

toSend
LibAsset.transferAsset()’

|@@ -565,22 +565,26 @@ contract TransactionManager is ReentrancyGuard, ITrans
/// @param user User who has completed a transaction
/// @param preparedBlock The TransactionData.preparedBlockNumber to remove
function removeUserActiveBlocks(address user, uint256 preparedBlock) inter
- // Remove active blocks

- uint256 newLength = activeTransactionBlocks[user].length - 1;

- uint256[1 memory updated = new uint256[](newLength);

- bool removed = false;

- uint256 updatedIdx = 9;

- for (uint256 i; i < newLength + 1; i++) {

- // Handle case where there could be more than one tx added in a block
- // And only one should be removed

- if (!removed && activeTransactionBlocks[user][i] == preparedBlock) {
- removed = true;

- continue;

- ki

- updated[updatedIdx] = activeTransactionBlocks[user][i];

RPN G I |

updatedldx++;

+
+ uint256[1 storage array = activeTransactionBlocks[user];
+ uint256 length = array.length;

+ uint256 matchIdx = type(uint).max;

+

+ for (uint256 i = @; i < length; i++) {

+ if (array[i] == preparedBlock)

+ {

+ matchIdx = i;

+ break;

+ }

}

activeTransactionBlocks[user] = updated;

if (matchIdx != type(uint256).max) {
for (uint256 i = matchIdx; i < length; i++) {
array[i] = array[i+l];

+ + [+ + + + + |+
—

ki
array.pop();
}
‘sstore(slot,sload(slot))’
activeTransactionBlocks[user][i] == blockIndexI

|require(activeTransactionBlocks[user][i] == blockIndex)I

activeBlocks EnumerableSet

‘recoverFulFillSignature’ ‘recoverCancelSignature

TransactionDataJ

‘transactionId

‘txData.transactionId]

mstore

./contracts/TransactionManager.sol:96: "addLiquidity: ETH WITH ERC TRANSFER"

./contracts/TransactionManager.sol:97: "addLiquidity: ERC20 TRANSFER FAILED"

./contracts/TransactionManager.sol:122: "removelLiquidity: INSUFFICIENT_FUNDS'Y™
»

https://github.com/connext/nxtp/pull/47

[G-12] ASSIGNMENT OF VARIABLES NOT NEEDED

Submitted by sTm0

Variables on [Tr'ansactionManager'. sol] L571 and L572 are being assigned their
default value so it's not needed.

Recommend removing the assignments for saving a bit of gas when deploying.

LayneHaber (Connext) acknowledged:

We are taking out the loop in favor of the [EnumerableSetJ from

OpenZeppelin

Disclosures

C4 is an open organization governed by participants in the community.

C4 Contests incentivize the discovery of exploits, vulnerabilities, and bugs in smart

contracts. Security researchers are rewarded at an increasing rate for finding higher-
risk issues. Contest submissions are judged by a knowledgeable security researcher
and solidity developer and disclosed to sponsoring developers. C4 does not conduct
formal verification regarding the provided code but instead provides final verification.

C4 does not provide any guarantee or warranty regarding the security of this project.
All smart contract software should be used at the sole risk and responsibility of users.

TWITTER // DISCORD // GITHUB
0XC2BC2F890067C511215F9463A064221577A53E10 //

