

dToken
Security Assessment
July 13, 2020

Prepared For:
Mindao Yang | ​dForce
hy@dforce.network

Prepared By:
Michael Colburn | ​Trail of Bits
michael.colburn@trailofbits.com

Sam Sun | ​Trail of Bits
sam.sun@trailofbits.com

http://hy@dforce.network/
mailto:michael.colburn@trailofbits.com
mailto:sam.sun@trailofbits.com

Review Summary

Code Maturity Evaluation

Project Dashboard

Appendix A. Code Maturity Classifications

Appendix B. Token Integration Checklist
ERC Conformity
Contract Composition
Owner privileges
Token Scarcity

© 2020 Trail of Bits dForce dToken Assessment | 1

Review Summary
From June 29 to July 10, 2020, Trail of Bits performed an assessment of dForce’s ​dToken
smart contracts​ with two engineers over two person-weeks. We reported 14 issues ranging
from medium to informational severity and made several code quality suggestions.

Throughout this assessment, we sought to answer various questions about the security of
the dToken system. We focused on flaws that would allow an attacker to:

● Gain unauthorized access to user funds.
● Bypass access controls to modify contract state.
● Interfere with interactions between dToken components.

The two medium-severity issues concerned 1) the heavy centralization of the system, which
could allow a malicious insider to drain user funds, and 2) the system’s inability to natively
handle airdropped tokens such as COMP. Two similar low-severity issues describe how
adding duplicate handlers could move the system into an inconsistent state, while a third
low-severity issue describes a method of manipulating the Aave interest rate. Several of the
informational issues concern external interactions with common tokens that do not strictly
implement the ERC20 standard.

The dForce team began fixing the issues as they were reported. See updated versions of
the codebase in the ​Project Dashboard​.

On the following page, we review the maturity of the codebase and the likelihood of future
issues. In each area of control, we rate the maturity from strong to weak, or missing, and
give a brief explanation of our reasoning. dForce should consider these steps to improve
their security maturity:

● Integrate ​fuzzing​ or ​symbolic execution​ to test the correctness of contract
functionality.

● Use ​crytic.io​ for any new code development.
● Follow best practices for privileged accounts, e.g., use a multi-sig wallet for

authorized users, and consider using an HSM (see ​our HSM recommendations​).

© 2020 Trail of Bits dForce dToken Assessment | 2

https://github.com/dforce-network/dToken
https://github.com/dforce-network/dToken
https://github.com/crytic/echidna/
https://github.com/trailofbits/manticore/
https://github.com/crytic/building-secure-contracts
https://blog.trailofbits.com/2018/11/27/10-rules-for-the-secure-use-of-cryptocurrency-hardware-wallets/

Code Maturity Evaluation
Category Name Description

Access Controls Satisfactory.​ Appropriate access controls were in place for
performing privileged operations. Slither identified one function
missing a ​whenNotPaused​ modifier but this omission did not have
serious security implications.

Arithmetic Satisfactory. ​The contracts made consistent use of safe arithmetic
library functions to prevent overflow.

Assembly Use Not Applicable. ​The contracts did not include any assembly outside
of the vendored OpenZeppelin libraries.

Centralization Moderate.​ Authorized users of the system were able to make
significant changes to the system such that a malicious insider could
trivially drain funds from the contracts. The authorization system
could eventually be migrated to a decentralized governance model.

Contract
Upgradeability

Satisfactory.​ The contracts made use of the OpenZeppelin proxy
upgradeability implementation.

Function
Composition

Satisfactory.​ Most functions were organized and scoped
appropriately. We suggested more consistent names along with
some shared code deduplication for the dToken redemption
functions.

Front-Running Satisfactory.​ dToken included the common ​increaseAllowance
and ​decreaseAllowance​ functions to help mitigate the ERC20 race
condition.

Monitoring Satisfactory.​ No functions were identified that would benefit from
additional events. Some events did not have indexed parameters,
and we noted that one event had parameters reversed relative to
similar events.

Specification Moderate.​ The code had adequate comment coverage, but the
project documentation and specification outside of source files was
minimal.

Testing &
Verification

Satisfactory. ​The repositories included tests for a variety of
scenarios.

© 2020 Trail of Bits dForce dToken Assessment | 3

Project Dashboard
Versions 1.0 and 1.1 formed the basis of the review. The subsequent versions were
reviewed to verify that the changes made correctly remedied the issues and did not
introduce new vulnerabilities.

Commit hashes of the reviewed versions from the ​dforce-network/dToken​ repository​:

● Audit Version 1.0: ​9adc11f
● Audit Version 1.1: ​e8492c4
● Audit Version 1.2: ​06e34e4
● Audit Version 1.3: ​c9b874a
● Audit Version 1.4: ​00a02f2

© 2020 Trail of Bits dForce dToken Assessment | 4

https://github.com/dforce-network/dToken
https://github.com/dforce-network/dToken
https://github.com/dforce-network/dToken/commit/9adc11fd1302f77f06d96b0408052381fefa0ba5
https://github.com/dforce-network/dToken/commit/e8492c4543e34d140d78d3b22c6331a5e8f19caf
https://github.com/dforce-network/dToken/commit/06e34e45e595a37397efd95fad2813bd8b324b1d
https://github.com/dforce-network/dToken/commit/c9b874a59404373e4d3544d878e272390f496134
https://github.com/dforce-network/dToken/commit/00a02f2b37c80ce42ef83c6d8ba8c40c3bb7501c

Appendix A. Code Maturity Classifications
Code Maturity Classes

Category Name Description

Access Controls Related to the authentication and authorization of components.

Arithmetic Related to the proper use of mathematical operations and
semantics.

Assembly Use Related to the use of inline assembly.

Centralization Related to the existence of a single point of failure.

Upgradeability Related to contract upgradeability.

Function
Composition

Related to separation of the logic into functions with clear purpose.

Front-Running Related to resilience against front-running.

Key Management Related to the existence of proper procedures for key generation,
distribution, and access.

Monitoring Related to use of events and monitoring procedures.

Specification Related to the expected codebase documentation.

Testing &
Verification

Related to the use of testing techniques (unit tests, fuzzing, symbolic
execution, etc.).

Rating Criteria

Rating Description

Strong The component was reviewed and no concerns were found.

Satisfactory The component had only minor issues.

Moderate The component had some issues.

Weak The component led to multiple issues; more issues might be present.

Missing The component was missing.

© 2020 Trail of Bits dForce dToken Assessment | 5

Not Applicable The component is not applicable.

Not Considered The component was not reviewed.

Further
Investigation
Required

The component requires further investigation.

© 2020 Trail of Bits dForce dToken Assessment | 6

Appendix B. Token Integration Checklist
The following checklist provides recommendations when interacting with arbitrary tokens.
Every unchecked item should be justified and its associated risks understood.

For convenience, all ​Slither​ utilities can be run directly on a token address, such as:

slither-check-erc 0xdac17f958d2ee523a2206206994597c13d831ec7 TetherToken

General Security Considerations
❏ The contract has a security review.​ Avoid interacting with contracts that lack a

security review. Check the length of the assessment (aka “level of effort”), the
reputation of the security firm, and the number and severity of the findings.

❏ You have contacted the developers.​ You may need to alert their team to an
incident. Look for appropriate contacts on ​blockchain-security-contacts​.

❏ They have a security mailing list for critical announcements.​ Their team should
advise users (like you!) when critical issues are found or when upgrades occur.

ERC Conformity
Slither includes a utility, ​slither-check-erc​, that reviews the conformance of a token to
many related ERC standards. Use ​slither-check-erc​ to review that:

❏ Transfer​ and ​transferFrom​ return a boolean.​ Several tokens do not return a

boolean on these functions. As a result, their calls in the contract might fail.
❏ The​ ​name​, ​decimals​, and ​symbol​ functions are present if used. ​These functions

are optional in the ERC20 standard and might not be present.
❏ Decimals​ returns a ​uint8​. ​Several tokens incorrectly return a ​uint256​. If this is the

case, ensure the value returned is below 255.
❏ The token mitigates the ​known ERC20 race condition​. ​The ERC20 standard has a

known ERC20 race condition that must be mitigated to prevent attackers from
stealing tokens.

❏ The token is not an ERC777 token and has no external function calls in
transfer​ and ​transferFrom​.​ External calls in the transfer functions can lead to
reentrancies.

Slither includes a utility, ​slither-prop​, that generates unit tests and security properties
that can discover many common ERC flaws. Use slither-prop to review that:

© 2020 Trail of Bits dForce dToken Assessment | 7

https://github.com/crytic/slither
https://github.com/crytic/blockchain-security-contacts
https://github.com/crytic/slither/wiki/ERC-Conformance
https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
https://github.com/crytic/slither/wiki/Property-generation

❏ The contract passes all unit tests and security properties from ​slither-prop​.
Run the generated unit tests, then check the properties with ​Echidna​ and ​Manticore​.

Finally, there are certain characteristics that are difficult to identify automatically. Review
for these conditions by hand:

❏ Transfer​ and ​transferFrom​ should not take a fee. ​Deflationary tokens can lead to

unexpected behavior.
❏ Potential interest earned from the token is taken into account. ​Some tokens

distribute interest to token holders. This interest might be trapped in the contract if
not taken into account.

Contract Composition
❏ The contract avoids unneeded complexity.​ The token should be a simple

contract; a token with complex code requires a higher standard of review. Use
Slither’s ​human-summary​ printer to identify complex code.

❏ The contract uses ​SafeMath​. ​Contracts that do not use ​SafeMath​ require a higher
standard of review. Inspect the contract by hand for ​SafeMath​ usage.

❏ The contract has only a few non–token-related functions. ​Non–token-related
functions increase the likelihood of an issue in the contract. Use Slither’s
contract-summary​ printer to broadly review the code used in the contract.

Owner privileges
❏ The token is not upgradeable. ​Upgradeable contracts might change their rules

over time. Use Slither’s ​human-summary​ printer to determine if the contract is
upgradeable.

❏ The owner has limited minting capabilities. ​Malicious or compromised owners
can abuse minting capabilities. Use Slither’s ​human-summary​ printer to review
minting capabilities, and consider manually reviewing the code.

❏ The token is not pausable. ​Malicious or compromised owners can trap contracts
relying on pausable tokens. Identify pauseable code by hand.

❏ The owner cannot blacklist the contract. ​Malicious or compromised owners can
trap contracts relying on tokens with a blacklist. Identify blacklisting features by
hand.

❏ The team behind the token is known and can be held responsible for abuse.
Contracts with anonymous development teams, or that reside in legal shelters
should require a higher standard of review.

Token Scarcity
Reviews for issues of token scarcity requires manual review. Check for these conditions:

© 2020 Trail of Bits dForce dToken Assessment | 8

https://github.com/crytic/echidna
https://manticore.readthedocs.io/en/latest/verifier.html
https://github.com/crytic/slither/wiki/Printer-documentation#human-summary
https://github.com/crytic/slither/wiki/Printer-documentation#contract-summary
https://github.com/crytic/slither/wiki/Printer-documentation#human-summary
https://github.com/crytic/slither/wiki/Printer-documentation#human-summary

❏ No user owns most of the supply. ​If a few users own most of the tokens, they can
influence operations based on the token's repartition.

❏ The total supply is sufficient. ​Tokens with a low total supply can be easily
manipulated.

❏ The tokens are located in more than a few exchanges. ​If all the tokens are in one
exchange, a compromise of the exchange can compromise the contract relying on
the token.

❏ Users understand the associated risks of large funds or flash loans. ​Contracts
relying on the token balance must carefully take in consideration attackers with
large funds or attacks through flash loans.

© 2020 Trail of Bits dForce dToken Assessment | 9

