

Livepeer
Security Assessment
Smart Contract and Token Protocol
March 12, 2018

Prepared For:
Doug Petkanics | Livepeer
doug@livepeer.org

Prepared By:
Evan Sultanik | Trail of Bits
evan.sultanik@trailofbits.com

Chris Evans | Trail of Bits
chris.evans@trailofbits.com

Changelog
March 9, 2018: Initial report delivered
March 10, 2018: Added informational finding TOB-Livepeer-005
March 12, 2018: Public release

© 2018 Trail of Bits Livepeer Security Assessment | 1

mailto:doug@livepeer.org
mailto:evan.sultanik@trailofbits.com
mailto:chris.evans@trailofbits.com

Executive Summary

Coverage

Project Dashboard

Recommendations Summary
Short Term
Long Term

Findings summary
1. Transcoder election can be predictable and influenced
2. Loss of precision for sufficiently high denominator and amount
3. Pseudorandom number generation is not random
4. Transcoders with low bonded stake can avoid slashing penalties
5. Bonding synchronization errors between data structures can enable stolen and
locked tokens

A. Vulnerability classifications

B. Code quality recommendations

C. Slither
Usage

D. Storage mapping deletion pattern in SortedDoublyLL

E. Pseudorandom number generation in smart contracts

© 2018 Trail of Bits Livepeer Security Assessment | 2

Executive Summary
From February 26 through March 9, 2018, Livepeer engaged with Trail of Bits to assess the
Livepeer system’s smart contracts. The assessed contracts components were written in
Solidity with a small amount of EVM assembly. Trail of Bits conducted this assessment over
the course of four person-weeks with two engineers.

The priority of the assessment focused on interactions between bonding management, job
management, stake and earning allocation, and round progression. We directed extensive
static analysis and dynamic instrumentation effort towards finding interactions that could
lead to ill-gotten monetary gain or denial of service attacks against the protocol.

The code reviewed is of excellent quality, written with obvious awareness of current smart
contract development best practices and utilizing well tested frameworks such as
OpenZeppelin. The manager proxy and delegate controller contracts are restrictive enough
to defend against any unauthorized administrative action.

The Livepeer protocol is designed to make several randomized decisions which are
generally unfair and susceptible to collusion. The logic and state machines of the managers
are very complex and could easily harbor new vulnerabilities as the result of a hasty future
refactor. Edge-cases related to the floating-point and linked-list implementations can
prevent delegated stake from being burnt after a slash. Analysis of the utility libraries for
floating-point and linked-list implementations revealed some edge-case scenarios that
prevent some delegated stake from burning after being slashed.

Overall the largest indicator of Livepeer’s security strength is the consistency of its code.
Integration and unit tests handle many edge cases that result from normal use of the
protocol. Changes made in response to these findings can indirectly mitigate many exploit
patterns. Extensive parameter handling and requirements also reduce the threat of
malformed patterns.

As development of smart contract software continues, ensure the same level of consistency
is maintained when adding features or upgrading pre-existing components. The current
iteration of the smart contract protocol provides a secure foundation and meets many of
the standards set by the Livepeer platform.

Appendix B and Appendix D contain references to implementation specifics that will help
developing around certain areas of the code. Appendix C contains a short reference to the
Slither static analyzer used in this engagement and accompanied with the final report.
Appendix E discusses the challenges of pseudorandom number generation with respect to
findings TOB-Livepeer-001 and TOB-Livepeer-003 .

© 2018 Trail of Bits Livepeer Security Assessment | 3

Engagement Goals & Scope
The engagement was scoped to provide a security assessment of the risk factors related to
the core Livepeer smart contract implementation and ecosystem.

In particular we sought to answer the following questions:

● Is it possible for an unauthorized third party to gain administrative access to
deployed Livepeer contracts?

● Are tokens managed and stored securely within the contract?
● Can participants manipulate the bonding and transcoding protocols to gain an

unfair advantage?
● Is it possible to cause the contract services to enter an unrecoverable state?

The following components remained out of scope and were not examined as part of the
assessment:

● The external TrueBit verification protocol for transcoded segments.
● Network protocols for peer-to-peer video streaming and playback.
● Transcoding libraries and software for desktop and mobile applications.
● The out-of-band storage and retrieval of transcoded segments on the Swarm layer.
● The Livepeer website and online media platform.

Trail of Bits conducted a detailed security analysis from the perspective of an attacker with
access to the public Livepeer documentation and source code. We sought to identify risks,
and scored their severity based on their likelihood and potential impact. We also sought to
provide a mitigation strategy for each risk factor, whether it required a procedural change
or a replacement of the solution, in whole or in part, with a more secure alternative.

© 2018 Trail of Bits Livepeer Security Assessment | 4

Coverage
While the entire codebase was inspected for common solidity flaws, this audit focused on
an in-depth analysis of the job, rounds, and bonding managers. Since the quality of the
coding standards are so high, latent bugs are likely to be related to logic or concurrency.

ERC20 token implementation and genesis. Scenarios involving token ownership,
transfer, and minting were assessed and tested. Usage of the OpenZepplin base templates
were analyzed for attack surface exposure. The initial token release contract was verified to
conform with standard ICO and crowdsale procedures. In the initial token genesis we
looked for initial parameters that could trigger the end of token distribution and delegation
prematurely. Proper handling of grant allocation arithmetic was inspected, but owner
restrictions on critical functions prohibited any extensive tampering outside of initialization.

Token minting and inflation. The token minter contract was primarily analyzed for use
cases that could manipulate inflation management to create unstable and unreasonable
bonding rates. Conditional logic prevents underflowing the inflation. However, the absence
of SafeMath might cause problems in the future.

Floating point arithmetic library. Percentage calculations were explored for edge cases
that could cause unintentional behavior in the core contract logic. The precision limits of
basic fractional operators were explored and tested for consistency and correctness
against expected results.

Internal on-chain data structures. The double linked-list for transcoder pools was
interrogated for bugs and situations that could corrupt the integrity of the data stored. It
was also tested for resilience against unorthodox requests for rapid insertion and removal
of nodes.

Job management protocols. Behavior for creation of transcoding jobs as well as claiming
rewards for completed work were examined for vulnerabilities. The penalty mechanism for
slashing dishonest participants was also explored for use cases of potential abuse.

Rounds Management Protocols. The mechanism for scheduling activity on the Livepeer
network was inspected for issues that could lead to deadlock or miscalculation. The
invariant assumptions of elapsed time, locking periods, and permissible function calls
within a round were tested.

Earnings protocols. The mechanism for claiming work was inspected to see if the checks
could be bypassed, e.g. , via a race condition. The verification methods were evaluated for
determinism and their susceptibility to collusion. Fee and earnings share stability and

© 2018 Trail of Bits Livepeer Security Assessment | 5

malleability was also covered. Finally, locking conditions were investigated to try and cause
a job to disappear or become irretrievable.

Bonding protocols. Numerous bonding edge cases, race conditions, and timing sequences
were investigated that are not yet exercised by the automated testing. For example,
bonding to transcoders that have not yet registered, re-bonding mid-round, and transcoder
re-signing and re-registration. Active transcoder election was also investigated to
determine whether it is predictable or influenceable.

Contract controller interfaces and proxy contract delegation. Proxy contract
delegation was reviewed briefly. No potential vulnerabilities were immediately apparent.
However, there was insufficient time to complete an investigation into the possibility to
abuse storage to change controller, manager, or owner addresses. Specifically, there might
be the possibility that an upgrade introducing uninitialized storage pointers or tainted array
lengths could enable the controller address and owner to be changed. While the base
target is sparse enough that such a vulnerability does not appear possible, it does warrant
further investigation.

Scalability. A small scale stress test was conducted with a dozen broadcasters, a dozen
transcoders, and two dozen delegators. Other than being mindful of scalability concerns
while auditing the code, no other specific effort was made into investigating scalability.

© 2018 Trail of Bits Livepeer Security Assessment | 6

Project Dashboard
Application Summary

Name Livepeer Protocol

Version 929182cc684410d55eb9048f47ed1ec3ab70461a

Type Smart contracts

Platform Solidity, Javascript

Engagement Summary

Dates February 26 to March 9, 2018

Method Whitebox

Consultants Engaged 2

Level of Effort 4 person-weeks

Vulnerability Summary

Total High Severity Issues 0

Total Medium Severity Issues 0

Total Low Severity Issues 3 ◼◼◼

Total Informational Severity Issues 2 ◼◼

Total Undetermined Severity Issues 0

Total 5

Category Breakdown

Denial of Service 1 ◼

Arithmetic 2 ◼◼

Cryptography 1 ◼

Undetermined 1 ◼

Total 4

© 2018 Trail of Bits Livepeer Security Assessment | 7

https://github.com/livepeer/protocol/tree/929182cc684410d55eb9048f47ed1ec3ab70461a

Recommendations Summary

Short Term
❑ Explicitly scope the parameters for floating point arithmetic functions. The
precision limit these functions can handle should be programmatically enforced.

❑ Limit the use of block hash and other deterministic entropy sources for
pseudorandomness. Transcoder elections are currently not fair. As soon as the Livepeer
ecosystem contains enough ether to justify miner collusion, any architectural component
that relies on the pseudorandom number generation (PRNG) scheme is threatened.

❑ Have transcoder slashing always penalize a minimum amount of stake if possible.
Scenarios where a transcoder has non-zero stake but can be slashed without suffering a
penalty encourages bad behavior on the Livepeer network.

❑ Improve source code comments to describe state machine semantics. Contracts like
the Bonding Manager have very complex semantics that are not immediately transparent
from the code. It would be very easy for these to be broken in a future refactor.

Long Term
❑ Document and extend the floating point library. Include detailed use cases of limits
as well as explanations of parameter inputs and limitations. This will help developers’
understanding for interacting with the library. Upstreaming these utilities to a third party
framework may support the development of a robust system that will be able to handle
extended precision needs in the future.

❑ Use an external source of randomness, or none at all. There is no safe way to use
blockchain-derived randomness without risking collusion and/or unfairness.

❑ Improve automated testing. Create integration tests to cover all of the intricacies and
edge cases of processes like bonding.

❑ Ensure penalties are strong enough to deter misbehavior. The transcoder slashing
protocol is currently the primary mechanism that inhibits dishonest participation of
processing video transcoding. Edge cases that do not proportionally punish misbehavior
have the potential to negatively impact the network as a whole.

© 2018 Trail of Bits Livepeer Security Assessment | 8

Findings summary
Title Type Severity

1 Transcoder election can be predictable
and influenceable

Denial of Service Low

2 Loss of precision for sufficiently high
denominator and amount

Arithmetic Informational

3 Pseudorandom number generation is not
random

Cryptography Low

4 Transcoders with low bonded stake can
avoid slashing penalties

Arithmetic Low

5 Bonding synchronization errors between
data structures can enable stolen and
locked tokens

Denial of Service Informational

© 2018 Trail of Bits Livepeer Security Assessment | 9

1. Transcoder election can be predictable and in�luenced
Severity: Low Difficulty: High
Type: Denial of Service Finding ID: TOB-Livepeer-001
Target: BondingManager.sol

Description
A malicious miner can influence the election by manipulating the job-creation block to
achieve a desired hash, or simply by choosing not to publish a block that would favor an
undesirable transcoder.

When a transcoder is claiming work, the JobsManager first ensures that the transcoder won
the election . This is determined by confirming that:

1. the transcoder is active; and
2. the hash of the job’s creation block, modulus the total stake among active

transcoders, results in stake assigned to the claimant :

// Pseudorandomly pick an available transcoder weighted by its stake relative

to the total stake of all available transcoders

uint256 r = uint256(_blockHash) % totalAvailableTranscoderStake;

uint256 s = 0 ;

uint256 j = 0 ;

while (s <= r && j < numAvailableTranscoders) {

 s = s.add(activeTranscoderTotalStake(availableTranscoders[j], _round));

 j ++ ;

}

return availableTranscoders[j ‑ 1];

Figure 1: Election Assignment Block in BondingManager.sol

The Livepeer protocol specification does note that a transcoder can launch a self-dealing
attack similar to the one described above if it is also an Ethereum miner.

Exploit Scenario
A malicious transcoder manipulates the hash of a job-creation block (e.g. , by transaction
reordering or injecting spurious transactions) such that its desired transcoder wins the
election.

© 2018 Trail of Bits Livepeer Security Assessment | 10

https://github.com/livepeer/protocol/blob/master/contracts/jobs/JobsManager.sol#L302
https://github.com/livepeer/protocol/blob/master/contracts/jobs/JobsManager.sol#L302
https://github.com/livepeer/protocol/blob/master/contracts/bonding/BondingManager.sol#L586-L596
https://github.com/livepeer/wiki/blob/master/SPEC.md#notes-2

Recommendation
There does not appear to be a resolution to this issue without changing the Livepeer
protocol. An external source of randomness for the transcoder election would resolve this
issue. While Livepeer is aware of this issue, we report it here in order to urge Livepeer to
use a different, more secure, and fairer means of electing transcoders.

© 2018 Trail of Bits Livepeer Security Assessment | 11

2. Loss of precision for su�ficiently high denominator and amount
Severity: Informational Difficulty: Low
Type: Arithmetic Finding ID: TOB-Livepeer-002
Target: MathUtils.sol

Description
When using MathUtils.percOf(amount, fracNum, fracDenom) , if the amount is large
enough where the fractional percentage is outside the precision range of the PERC_DIVISOR
constant, then the returned value will always round down to 0.

 /*

 * @dev Compute percentage of a value with the percentage represented by a fraction

 * @param _amount Amount to take the percentage of

 * @param _fracNum Numerator of fraction representing the percentage

 * @param _fracDenom Denominator of fraction representing the percentage

 */

 function percOf(uint256 _amount, uint256 _fracNum, uint256 _fracDenom) internal pure

returns (uint256) {

 return _amount.mul(percPoints(_fracNum, _fracDenom)).div(PERC_DIVISOR);

 }

 /*

 * @dev Compute percentage representation of a fraction

 * @param _fracNum Numerator of fraction represeting the percentage

 * @param _fracDenom Denominator of fraction represeting the percentage

 */

 function percPoints(uint256 _fracNum, uint256 _fracDenom) internal pure returns

(uint256) {

 return _fracNum.mul(PERC_DIVISOR).div(_fracDenom);

 }

Figure 2: Susceptible functions in MathUtils.sol

Consider the scenario where a user attempts to calculate a fractional percentage point of
large value:

fracNum = 1

fracDenom = PERC_DIVSOR + 1

amount = 25000000

MathUtils.percPoints will return 0, causing the resulting quotient to always be 0, where
in this case the actual value is closer to 249. Since this level of precision may be outside of

© 2018 Trail of Bits Livepeer Security Assessment | 12

the required ceiling for Livepeer, and these functions are mostly used internally, the finding
is classified as informational.

Exploit Scenario
Alice deploys a smart contract to handle participation in the Livepeer network. She imports
MathUtils.sol to evaluate calculative logic for her own transactions perhaps involving wei
and gas costs. Zero results for some cases cause her to lose money or make suboptimal
decisions, causing her to withdraw her participation.

Recommendation
Require MathUtils.validPerc to verify that the product of fracNum.mul(PERC_DIVISOR) is
< fracDenom .

In the long term, examine the use cases for fixed-point arithmetic and include clear
documentation for the limits and restrictions for calling into these functions. Enumerate
rounding decisions and scenarios that would result in a loss of precision.

© 2018 Trail of Bits Livepeer Security Assessment | 13

3. Pseudorandom number generation is not random
Severity: Low Difficulty: High
Type: Cryptography Finding ID: TOB-Livepeer-003
Target: BondingManager.sol

Description
Transcoder assignment elections are not fair. The PRNG scheme is not uniformly
distributed. The problem is that pseudorandom numbers are generated by taking a block
hash modulus with an arbitrary sum of the bonded transcoder stakes . This will not produce
a pseudorandom number. Specifically, the distribution of the randomly generated value is
not guaranteed to be uniform across all active transcoders.

Figure 3 is a plot of the frequency of transcoders being elected from a pool of 100
transcoders across 10,000 elections with all transcoders having equal stake. The red line is
the result of a fair election produced by a cryptographically secure PRNG, while the blue
line is the result of the Livepeer election.

Figure 3: Red is a cryptographically secure PRNG , blue is the Livepeer PRNG

The X axis contains one bucket for each of the 100 transcoders, ordered by their index in
the active transcoder set. The Y axis is the percentage of the elections in which each of the
100 transcoders were elected. As expected, the fair election results in each transcoder
having a 1% probability of winning. However, the Livepeer contract election produces a
very unfair distribution that is dependent on the transcoder’s position in the active
transcoder set, with some transcoders having over a 60% advantage relative to others.

© 2018 Trail of Bits Livepeer Security Assessment | 14

https://github.com/livepeer/protocol/blob/master/contracts/bonding/BondingManager.sol#L587
https://github.com/livepeer/protocol/blob/master/contracts/bonding/BondingManager.sol#L587

Exploit Scenario
A malicious transcoder registers itself to be active at such a time that it is ensured to be in a
position within activeTranscoderSet that maximizes its probability of being selected.

Recommendation
Do not use block hashes as a source of randomness.

An alternative might be to have some deterministic metric for which transcoder to select,
such as the time since it was last selected weighted by its bonded stake.

If randomness must be used and an external source of randomness is not available, then
use the block hash to seed an accepted pseudorandom number generation algorithm that
is guaranteed to produce a uniform distribution. Such a solution will produce a fairer
election, but it will not mitigate prediction attacks like TOB-Livepeer-001 .

References

● Appendix E : Pseudorandom number generation in smart contracts

© 2018 Trail of Bits Livepeer Security Assessment | 15

4. Transcoders with low bonded stake can avoid slashing penalties
Severity: Low Difficulty: Low
Type: Arithmetic Finding ID: TOB-Livepeer-004
Target: BondingManager.sol

Description
When a transcoder is slashed, the Job Manager sets a percentage of the bonded delegated
stake to burn as a penalty. This is passed into slashTranscoder as _slashAmount . Based
on this parameter, there will always be a maximum n number bounded stake that will not
be burned for a _slashAmount of PERC_DIVSOR/ n +1.

function slashTranscoder(

 address _transcoder,

 address _finder,

 uint256 _slashAmount,

 uint256 _finderFee

)

 external

 whenSystemNotPaused

 onlyJobsManager

 {

 Delegator storage del = delegators[_transcoder];

 if (del.bondedAmount > 0) {

 uint256 penalty = MathUtils.percOf(delegators[_transcoder].bondedAmount,

_slashAmount);

 // Decrease bonded stake

 del.bondedAmount = del.bondedAmount.sub(penalty);

Figure 4: Penalty calculation does not check for 0

Slashed transcoders will be ejected from the registered pool. Since the bonded stake is
neither subtracted nor burned, it remains available and can be withdrawn or rebonded to a
different address.

Exploit Scenario
Alice registers transcoders on the Livepeer network that adjust their bonded stake to
match the minimum tokens that cannot be penalized. As long as they remain in the
transcoder pool, there is a pseudo-random chance for them to be selected and claim work.
If they are penalized when selected for verification, Alice can re-register or withdraw the
bonded stake and reintroduce a new transcoder into the pool.

© 2018 Trail of Bits Livepeer Security Assessment | 16

Recommendation
Subtract the total amount of bonded stake if the penalty is 0 but
delegators[_transcoder].bondedAmount is > 0 . Alternatively, have a minimum penalty
value and take the maximum between this and the calculated penalty.

In the long term, have integration tests that ensure penalized participants cannot evade the
deterrent. In addition, awarding finders’ fees for users’ participation in slashing will
incentivize abuse by malicious actors. Ensure that internal tests reflect scenarios in which
transcoders may be unfairly reported.

References

● When a transcoder is slashed, the Job Manager sets a percentage of the bonded
delegated stake to burn as a penalty via the setMissedVerificationSlashAmount
and setDoubleClaimSegmentSlashAmount functions.

© 2018 Trail of Bits Livepeer Security Assessment | 17

https://github.com/trailofbits/livepeer-audit/blob/929182cc684410d55eb9048f47ed1ec3ab70461a/contracts/jobs/JobsManager.sol#L167-L187
https://github.com/trailofbits/livepeer-audit/blob/929182cc684410d55eb9048f47ed1ec3ab70461a/contracts/jobs/JobsManager.sol#L167-L187
https://github.com/trailofbits/livepeer-audit/blob/929182cc684410d55eb9048f47ed1ec3ab70461a/contracts/jobs/JobsManager.sol#L167-L187
https://github.com/trailofbits/livepeer-audit/blob/929182cc684410d55eb9048f47ed1ec3ab70461a/contracts/jobs/JobsManager.sol#L167-L187

5. Bonding synchronization errors between data structures can enable
stolen and locked tokens
Severity: Informational Difficulty: Undetermined

Type: Denial of Service Finding ID: TOB-Livepeer-005
Targets: BondingManager.sol and EarningsPool.sol

Description
Delegated stake is stored in two different data structures. If the data structures ever get
out of sync, delegates will be able to claim earnings that are not owed to them, artificially
reduce transcoders’ bonded stake, and lock other delegates’ tokens and bonding ability.
This is because certain bonding checks validate against one data structure, while others
validate against the other.

Delegated stake is stored in two different data structures within the Bonding Manager:
delegators and transcoderPool . The former maps delegators’ bonded stake to their
delegates, while the keys of the latter store the sums of the delegated stake for the
transcoders. If there is any way to break the synchronization between these data
structures—such that the transcoder stake summations in transcoderPool are
erroneous—then delegators would be able to remove stake from transcoders. When a
delegator re-bonds to a new address or unbonds itself completely, if at that time its old
delegated stake is for a registered transcoder, then its stake will be subtracted from that
transcoder’s key in transcoderPool according to the value in delegators .

 if (transcoderStatus(del.delegateAddress) == TranscoderStatus.Registered) {

 // Previously delegated to a transcoder

 // Decrease old transcoder's total stake

 transcoderPool.updateKey(

 del.delegateAddress,

 transcoderPool.getKey(del.delegateAddress).sub(del.bondedAmount),

 address(0), address(0)

);

 }

Figure 5: Transcoder stake deletion in BondingManager.sol

The eligibility to claim earnings is based off of a delegator’s delegateAddress in the
delegators data structure , but the actual earnings calculation is based off of the delegated
amount in the transcoderPool data structure . Moreover, if the erroneously reduced stake
is sufficiently high, it can lock other delegators’ stakes to that transcoder, as is
demonstrated by the following exploit scenario. Finally, if the original delegator claims
earnings before any other delegators bonded to the same transcoder—which will
automatically happen when the transcoder either unbonds or re-bonds—then the original

© 2018 Trail of Bits Livepeer Security Assessment | 18

https://github.com/livepeer/protocol/blob/929182cc684410d55eb9048f47ed1ec3ab70461a/contracts/bonding/BondingManager.sol#L62
https://github.com/livepeer/protocol/blob/929182cc684410d55eb9048f47ed1ec3ab70461a/contracts/bonding/BondingManager.sol#L69
https://github.com/livepeer/protocol/blob/929182cc684410d55eb9048f47ed1ec3ab70461a/contracts/bonding/BondingManager.sol#L296-L300
https://github.com/livepeer/protocol/blob/929182cc684410d55eb9048f47ed1ec3ab70461a/contracts/bonding/BondingManager.sol#L296-L300
https://github.com/livepeer/protocol/blob/929182cc684410d55eb9048f47ed1ec3ab70461a/contracts/bonding/BondingManager.sol#L296-L300
https://github.com/livepeer/protocol/blob/929182cc684410d55eb9048f47ed1ec3ab70461a/contracts/bonding/BondingManager.sol#L914
https://github.com/livepeer/protocol/blob/929182cc684410d55eb9048f47ed1ec3ab70461a/contracts/bonding/BondingManager.sol#L914
https://github.com/livepeer/protocol/blob/929182cc684410d55eb9048f47ed1ec3ab70461a/contracts/bonding/BondingManager.sol#L914
https://github.com/livepeer/protocol/blob/929182cc684410d55eb9048f47ed1ec3ab70461a/contracts/bonding/BondingManager.sol#L914
https://github.com/livepeer/protocol/blob/929182cc684410d55eb9048f47ed1ec3ab70461a/contracts/bonding/BondingManager.sol#L914
https://github.com/livepeer/protocol/blob/929182cc684410d55eb9048f47ed1ec3ab70461a/contracts/bonding/BondingManager.sol#L424-L437
https://github.com/livepeer/protocol/blob/929182cc684410d55eb9048f47ed1ec3ab70461a/contracts/bonding/BondingManager.sol#L424-L437
https://github.com/livepeer/protocol/blob/929182cc684410d55eb9048f47ed1ec3ab70461a/contracts/bonding/BondingManager.sol#L424-L437
https://github.com/livepeer/protocol/blob/929182cc684410d55eb9048f47ed1ec3ab70461a/contracts/bonding/BondingManager.sol#L424-L437

delegator will receive earnings intended for the other delegators, since the rewards pool
did not take into account the original phantom stake. When the other delegators
subsequently attempt to claim earnings, a SafeMath assertion will fail when each delegator
attempts to subtract their claims from the earnings pool , effectively locking their earnings
and preventing the delegator from ever unbonding.

Note: The severity of this finding is classified as “Informational” because we were not able to exploit it.

Therefore, it does not pose any immediate security risk. However, a future modification to the
Bonding Manager contract could easily expose it.

Exploit Scenario
Alice wants to reduce the stake of Bob’s transcoder. Alice has bonded 1,337 delegated
stake to Bob’s transcoder, Bob has bonded 1,000 of his own stake, and Carol has also
bonded 2,000 stake to Bob’s transcoder.

Assume that a synchronization error does exist that prevented Alice’s 1,337 stake from
appearing in the transcoderPool data structure. Therefore, from the perspective of the
transcoderPool , Bob’s transcoder will only have 3,000 bonded stake, not the correct
amoung: 4,337.

Malicious Delegator Can Claim Additional Earnings
As long as Alice claims her earnings for Bob’s transcoder’s claimed work relatively early, she
will get an undue increase in her reward. This is because the earnings pool’s claimable
stake is based off of the erroneous basis of 3,000 bonded stake. Therefore, Alice will
receive 1,337/3,000 = ~45% of the reward pool instead of the 1,337/4,337 = ~31% that she
actually deserves.

Malicious Delegator Can Artificially Reduce Transcoders’ Bonded Stake
Alice eventually re-bonds her stake to a different address or alternatively un-bonds herself
completely. This automatically calls claimEarnings , which will once again give Alice an
undue share of the rewards. After Alice completes her bonding change, Bob’s transcoder’s
address in the transcoderPool datastructure will have its bonded amount reduced by
Alice’s 1,337, resulting in an erroneous bonded stake of 1,663.

Other Delegators’ Bonded Tokens Can Be Locked
Carol decides to re-bond to a different transcoder. However, she will be unable to because
the claimable stake in the earnings pool is less than Carol’s stake of 2000, causing an
assertion error in autoClaimEarnings . Even if that were not the case, the safe subtraction
in Figure 4 would also fail an assertion because del.bondedAmount = 2000 but Bob’s
transcoder’s value in the transcoderPool is currently 1663 . This effectively locks Carol’s
delegated stake, preventing her from unbonding, re-bonding, or claiming her stake.

© 2018 Trail of Bits Livepeer Security Assessment | 19

https://github.com/livepeer/protocol/blob/929182cc684410d55eb9048f47ed1ec3ab70461a/contracts/bonding/libraries/EarningsPool.sol#L49
https://github.com/livepeer/protocol/blob/929182cc684410d55eb9048f47ed1ec3ab70461a/contracts/bonding/libraries/EarningsPool.sol#L49

Recommendation
Improve source code comments to provide better context for the interdependency
between data structures and their semantics.

Consider improving the automated integration tests to check for bonding edge cases.

© 2018 Trail of Bits Livepeer Security Assessment | 20

A. Vulnerability classifications
Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices or software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Arithmetic Related to arithmetic calculations

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Timing Related to race conditions, locking or order of operations

Undefined Behavior Related to undefined behavior triggered by the program

© 2018 Trail of Bits Livepeer Security Assessment | 21

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important

Medium Individual user’s information is at risk, exploitation would be bad for
client’s reputation, moderate financial impact, possible legal
implications for client

High Large numbers of users, very bad for client’s reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may
need to know extremely complex technical details or must discover
other weaknesses in order to exploit this issue

© 2018 Trail of Bits Livepeer Security Assessment | 22

B. Code quality recommendations
The following recommendations are not associated with specific vulnerabilities, however,
they enhance readability and may prevent the introduction of vulnerabilities in the future.

Apply SafeMath operators consistently

● require() calls in contracts that check arithmetic conditions should also employ
SafeMath to ensure consistent logic

○ JobsManager.sol::setVerification*
○ GenesisManager.sol::setAllocations

● Ensure that modified data structure fields are protected against potential overflows
introduced by future code

○ In SortedDoublyListLL.sol the remove() and insert() calls increment and
decrement self.size .

● Inflation management in Minter.sol::setInflation is protected by conditional
logic, but the inflation decrease should use SafeMath just in case.

Improve Comments and Test Coverage in the Bonding Manager
● Bonding, unbonding, transcoder registration, and transcoder resigning are all very

complex processes. There are many edge cases that are not currently covered in the
unit and integration tests. For example, we recommend adding tests for cases when
delegators delegate stake to unregistered transcoders which will later be registered.

● The current implementation of the Bonding Manager is somewhat brittle. Since the
semantics of the delegators and transcoderPool datastructures are so complex,
improve the documentation of these interactions’ purpose, potential side effects,
and any other functions or mechanisms in which they are relevant.

© 2018 Trail of Bits Livepeer Security Assessment | 23

C. Slither
Trail of Bits has included our Solidity static analyzer, Slither, with this report. Slither works
on the Abstract Syntax Tree (AST) generated by the Solidity compiler and detects some of
the most common smart contract security issues, including:

● The lack of a constructor
● The presence of unprotected functions
● Uninitialized variables
● Unused variables
● Functions declared as constant that change the state
● Deletion of a structure containing a mapping

Slither is an unsound static analyzer and may report false positives. The lack of proper
support for inheritance and some object types (such as arrays) may lead to false positives.

Usage
Launch the analysis on the Soldity file:

$ python /path/to/slither.py file.sol

Ensure that import dependencies and libraries, such as OpenZepplin, can be found by the
solc compiler in the same directory.

© 2018 Trail of Bits Livepeer Security Assessment | 24

D. Storage mapping deletion pattern in SortedDoublyLL
The Linked List implementation included in the utility libraries is the data structure in
charge of managing candidate and reserve transcoder pool members. This implementation
enforces the pool’s size. This protects against edge cases that involve a mismatch in
reported size and actual size of the list. However, it means that the only solution to
decreasing pool size is to create a new one.

If multiple transcoder pools are used in the future, then storing this data in an array of
structures could lead to a situation where a Data struct entry is deleted but the underlying
Node mappings remain.

The following code demonstrates a scenario where old mappings from a deleted
transcoder pool are included in new one:

// Information for a node in the list

 struct Node {

 uint256 key;

 address nextId;

 address prevId;

 }

 // Information for the list

 struct Data {

 address head;

 address tail;

 uint256 maxSize;

 uint256 size;

 mapping (address => Node) nodes;

 }

Data first_pool;

Data second_pool;

Data third_pool

Data[] data_list;

data_list.push(first_pool);

data_list.push(second_pool);

delete data_list[0];

Data_list[0] = third_pool;

Figure 4: third_pool replaces first_pool but the underlying mappings will not get deleted

© 2018 Trail of Bits Livepeer Security Assessment | 25

The Solidity documentation states that:

delete has no effect on whole mappings (as the keys of mappings may be arbitrary and are
generally unknown). So if you delete a struct, it will reset all members that are not mappings and
also recurse into the members unless they are mappings.

As result, all the node information for addresses‑>Nodes persists. Since many checks use
key , prevId , and nextId, it may be possible to massage the internal storage structures by
reusing “deleted” space to create a pool that favors adversarial transcoders. For example,
this pattern is exhibited in contains() , which checks if node.key > 0 to determine if the
linked list contains that entry. Since deleting the original structure does not recursively
delete these fields, the linked list will erroneously report that it contains the node.

In order to effectively address this issue, ensure that calls to non-existent pools are
reverted. In the long term, ensure that unit tests exhaustively check that underlying storage
data is consistent with deletion logic.

© 2018 Trail of Bits Livepeer Security Assessment | 26

http://solidity.readthedocs.io/en/develop/types.html?highlight=delete#delete

E. Pseudorandom number generation in smart contracts
Pseudorandom number generation on the blockchain is generally unsafe. There are a
number of reasons for this, including:

1. The blockchain does not provide any cryptographically secure source of
randomness. Block hashes in isolation are cryptographically random, however, a
malicious miner can modify block headers, introduce additional transactions, and
choose not to publish blocks in order to influence the resulting hashes. Therefore,
miner-influenced values like block hashes and timestamps should never be used as
a source of randomness.

2. Everything in a contract is publicly visible. Random numbers cannot be
generated or stored in the contract until after all lottery entries have been stored.

3. Computers will always be faster than the blockchain. Any number that the
contract could generate can potentially be precalculated off-chain before the end of
the block.

Even if miners are trusted or a specific situation is deemed appropriate for using block
hashes as a source of randomness (e.g. , using the block hash of a subsequent block to a
transaction), one still must be extremely careful about how randomness is generated. For
example, say a contract needs to randomly select a winner from a set of n addresses that
were submitted during a previous block. Since the current block’s hash is random and
assumed to be unpredictable and non-influenceable—an admittedly large assumption —
then a naïve approach might be to calculate the winner like so:

winner = entries[blockHash % entries.length];

The trouble is that taking the modulus of a random number does not produce another
random number.

© 2018 Trail of Bits Livepeer Security Assessment | 27

http://martin.swende.se/blog/Breaking_the_house.html
http://martin.swende.se/blog/Breaking_the_house.html
http://martin.swende.se/blog/Breaking_the_house.html

