
October 25, 2018 — Quantstamp Verified

This smart contract audit was prepared by Quantstamp, the protocol for securing smart contracts.

Omisego Plasma MVP

Protocol Proof of ConceptType Goals

Architecture Review, Unit Testing, Functional Testing,

Computer-Aided Verification, Manual Review

Specification Tesuji Plasma Blockchain Design

Repository Commit Commit

plasma-contracts dbbdaef 3cc6097

13 (2 fixed)Total Issues

2High Risk Issues

0Medium Risk Issues

1Low Risk Issues

10Informational Risk Issues

0Undetermined Risk Issues

13 issues

Source Code

Methods

Kacper Bąk, Senior Research Engineer

John Bender, Senior Research Engineer

Martin Derka, Senior Research Engineer

Yohei Oka, Forward Deployed Engineer

Jan Gorzny, Blockchain Researcher

This report focused on evaluating security of smart contracts, as requested by

the omisego-plasma-mvp team. Specific questions to answer:

• can users' funds get locked up in the Plasma child chain?

• can users successfully exit their funds should the need arise?

• can the operator steal users' funds?

• are funds protected against reorgs?

Overall Assessment

The contracts provide a prototype implementation of Plasma. Quantstamp has

found some important issues with the code, notably: violation of child block

intervals that are meant to protect against reorgs (fixed in commit 3cc6097), and

a possibility of carrying out a denial of service attack on exits. Furthermore, we

also give a set of recommendations to ensure that the code conforms to the best

practices.

Changelog

This report focused on evaluating security of smart contracts, as requested by

the omisego-plasma-mvp team. Specific questions to answer:

• Date: 2018-10-11 - Initial report

• Date: 2018-10-16 - Added recommendations and updated test section

• Date: 2018-10-22 - Investigated the relevant part of the diff between

commits dbbdaef and 3cc6097

Auditors

Solidity, PythonLanguages

2018-09-24 through 2018-10-11Timeline

Executive Summary

Severity Categories

Informational The issue does not pose an immediate threat to continued
operation or usage, but is relevant for security best
practices, software engineering best practices, or
defensive redundancy.

Undetermined The impact of the issue is uncertain.

The risk is relatively small and could not be exploited on a
recurring basis, or is a risk that the client has indicated is
low-impact in view of the client’s business circumstances.

Low

The issue puts a subset of users’ sensitive information at
risk, would be detrimental for the client’s reputation if
exploited, or is reasonably likely to lead to moderate
financial impact.

Medium

The issue puts a large number of users’ sensitive
information at risk, or is reasonably likely to lead to
catastrophic impact for client’s reputation or serious
financial implications for client and users.

High

Quantstamp's objective was to evaluate the omisego-plasma-mvp repository for

security-related issues, code quality, and adherence to specification and best-

practices. Possible issues we looked for include (but are not limited to):

• Transaction-ordering dependence

• Timestamp dependence

• Mishandled exceptions and call stack limits

• Unsafe external calls

• Integer overflow / underflow

• Number rounding errors

• Reentrancy and cross-function vulnerabilities

• Denial of service / logical oversights

• Access control

• Centralization of power

• Business logic contradicting the specification

• Code clones, functionality duplication

• Gas usage

• Arbitrary token minting

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following:

i. Review of the specifications, sources, and instructions provided to

Quantstamp to make sure we understand the size, scope,

and functionality of the smart contract.

ii. Manual review of code, which is the process of reading source code

line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether

the code does what the specifications, sources, and instructions

provided to Quantstamp describe.

2. Testing and automated analysis that includes the following:

i. Test coverage analysis, which is the process of determining whether

the test cases are actually covering the code and how

much code is exercised when we run those test cases.

ii. Symbolic execution, which is analyzing a program to determine what

inputs cause each part of a program to execute.

3. Best-practices review, which is a review of the smart contracts to improve

efficiency, effectiveness, clarify, maintainability, security,

and control based on the established industry and academic practices,

recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take

steps to secure your smart contracts.

Toolset

The below notes outline the setup and steps performed in the process of this

audit.

Setup

Testing setup:

• Oyente v1.2.5

• Mythril v0.2.7

• truffle-flattener v0.18.9

• MAIAN commit: ab387e1

• Securify

Quantstamp Audit Breakdown

Assessment

Deposit Block Can Be Written Past CHILD_BLOCK_INTERVAL

Status: Fixed

Contract(s) affected: RootChain.sol

Severity: High

Description: The contract RootChain.sol uses the constant

CHILD_BLOCK_INTERVAL to distinguish between child chain and deposit blocks. It

protects against reorgs, i.e., block and transaction order changing on the root

chain. Reorgs can lead to spurious invalidity of the child chain. The check in line

161, however, can be bypassed and, consequently, the invariant that deposit

blocks should never appear in child block indices and vice-versa can be violated.

We note that the issue may be exploited by a malicious token contract which can

be added by any user.

Exploit Scenario:

1. Add malicious token contract to RootChain.sol via the function

addToken().

2. depositFrom() calls transferFrom() (line 164).

3. transferFrom() of a malicious token calls deposit() multiple times till

currentDepositBlock == CHILD_BLOCK_INTERVAL - 1.

4. transferFrom() returns true allowing writeDepositBlock() to increment

currentDepositBlock beyond CHILD_BLOCK_INTERVAL.

5. This allows a malicious token to enable transfers without a real deposit as

the deposit block will be overwritten by the next submitted plasma block.

Recommendation: Add require check of currentDepositBlock <

CHILD_BLOCK_INTERVAL to writeDepositBlock().

Anybody May Initiate Deposit on Behalf of the Owner

Status: Fixed

Contract(s) affected: RootChain.sol

Severity: Low

Description: The function depositFrom() takes owner as parameter instead of

relying on msg.sender. Consequently, once an allowance is approved, anybody

may initiate a deposit on behalf of the owner at any time, even against the

actual owner's will.

Recommendation: Remove the parameter owner from depositFrom() and rely

on msg.sender instead.

Malicious Token transfer() Function May Block All the Subsequent Exits for

the Given Token

Contract(s) affected: RootChain.sol

Severity: High

Description: Correct handling of exits is crucial for the overall security of Plasma

chains. A malicious token contract may block all the subsequent exits for the

given token by performing a DOS attack from within the function

finalizeExits().

Exploit Scenario:

1. Add malicious token contract to RootChain.sol via the function

addToken().

2. finalizeExits() calls transfer() (line 297).

3. transfer() intentionally returns false.

4. finalizeExits() gets reverted undoing queue.delMin() (line 289).

Recommendation: Let only the Plasma operator add token contracts which are

known to be non-malicious.

Violation of checks-effects-interactions Pattern

Contract(s) affected: RootChain.sol

Severity: Informational

Description: In the function finalizeExits(), the loop body (lines 287-307)

allows the token transfer() call (line 297) to violate checks-effects-interactions

pattern, which states that interactions with other contracts should happen at the

very end of the function. Consequently transfer() may re-enter

finalizeExits().

Recommendation: Consider storing external transfers and start processing them

after the loop. Alternatively, use a modifier that prevents re-entrancy into

finalizeExits().

Clone-and-Own

Contract(s) affected: ERC20.sol, ERC20Basic.sol, Math.sol,

SafeMath.sol, StandardToken.sol, Ownable.sol, ECRecovery.sol,

MintableToken.sol, PriorityQueue.sol, RootChain.sol, RLP.sol

Severity: Informational

Description: The codebase relies on the clone-and-own approach for code reuse.

The clone-and-own approach involves copying and adjusting open source code

at one's own discretion. From the development perspective, it is initially beneficial

as it reduces the amount of effort. However, from the security perspective, it

involves some risks as the code may not follow the best practices, may contain a

security vulnerability, or may include intentionally or unintentionally modified

upstream libraries. For example, although unused, the function copy() in

RLP.sol has an incorrect implementation in line 203, where mload(dest) should

be replaced by mload(src).

Recommendation: Rather than the clone-and-own approach, a good industry

practice is to use the npm and Truffle framework for managing library

dependencies. This eliminates the clone-and-own risks yet allows for following

best practices, such as, using libraries. Furthermore, we recommend:

• using OpenZeppelin implementations of the following contracts: ERC20.sol,

ERC20Basic.sol, Math.sol, SafeMath.sol (the current OpenZeppelin

implementation uses require instead of assert statements),

StandardToken.sol (approve(), increaseApproval(),

decreaseApproval() should have a check for spender != address(0)),

Ownable.sol, ECRecovery.sol, and MintableToken.sol.

• use Ownable for PriorityQueue.sol and RootChain.sol

Multiple Invocations of startFeeExit() Could Potentially Block Other Exists

Contract(s) affected: RootChain.sol

Severity: Informational

Description: If currentFeeExit becomes large enough and there are 2^128

invocations of startFeeExit(), the fee exits UTXO position may clash with other

exits (regular exists and deposit exists) since there is no validation that _utxoPos,

should be less than 2^128. Otherwise, the bitwise OR in addExitToQueue() will

affect the exitable_at value. Consequently, one can block the other exits. We

consider this attack mostly theoretical since the number of required

startFeeExit() invocations is impractically large.

Legacy Function Modifiers

Contract(s) affected: ERC20.sol, ERC20Basic.sol, StandardToken.sol,

BasicToken.sol, Validate.sol

Severity: Informational

Description: Multiple functions are marked as constant. Furthermore

checkSigs() in Validate.sol is marked as internal.

Recommendation: Mark the constant functions as view s. Mark checkSigs() as

pure.

Unnamed Constants

Contract(s) affected: PlasmaRLP.sol, RootChain.sol

Severity: Informational

Description: Magic numbers, e.g., 1000000000 and 10000, are used across

contracts.

Recommendation: Define named constants to improve code documentation and

decrease the probability of making typo errors.

Operator Can Exit Any Amount They Want

Contract(s) affected: RootChain.sol

Severity: Informational

Description: Fees in the contract are implicit. The function startFeeExit() allows

the operator to exit any amount they want, since the amount is specified as a

parameter. The fees will be withdrawn from the same pool that holds users'

funds. According to the specification, watchers must keep observing the contract

to detect possible fraud and exit users’ funds.

Unlocked Pragma

Contract(s) affected: RootChain.sol, PlasmaRLP.sol

Severity: Informational

Description: Every Solidity file specifies in the header a version number of the

format pragma solidity (^)0.4.*. The caret (^) before the version number

implies an unlocked pragma, meaning that the compiler will use the specified

version and above, hence the term "unlocked."

Recommendation: For consistency and to prevent unexpected behavior in the

future, it is recommended to remove the caret to lock the file onto a specific

Solidity version.

Supplement the code with Truffle project

Severity: Informational

Description: Truffle is a prominent tool used for organizing Solidity code projects.

It helps to manage dependencies, run tests, and process the code with other

tools.

Recommendation: We recommend supplementing the code with Truffle project.

For new tests, it would help to measure the code coverage (via solidity-

coverage tool), as well as get more inputs for the gas cost analysis.

Use require instead of assert for argument validation

Contract(s) affected: Validate.sol

Severity: Informational

Description: The function checkSigs() uses assert to report post-validate

oindex.

Recommendation: We recommend replacing the use of assert with require at

the beginning of the function, and then explicitly return false in line 27.

Gas Usage / for Loop Concerns

Contract(s) affected: RootChain.sol, PriorityQueue.sol

Severity: Informational

Description: Gas usage is a main concern for smart contract developers and

users, since high gas costs may prevent users from wanting to use the smart

contract. Even worse, some gas usage issues may prevent the contract from

providing services entirely.

Below, we answer few questions related to gas usage. We use the

PriorityQueue.sol contract operations as a proxy for the entire

RootChain.sol contract for calculating bounds on the number of operations due

to gas consumption.

Q: How large can the queue be before insert() or delMin() exceed the block

gas limit?

A: Assuming:

• the block gas limit is 8,000,000, and

• the upper bound cost of executing insert() or delMin() for a queue of

size N is 21,000 + 26,538 + 6,638 * floor(log(2, N)),

the queue would have to be longer than 2^1199, which, in a real-world setting,

seems like an unrealistically large number.

Q: What is the maximum size of the queue in 2 weeks?

A: Assuming:

• the block gas limit is 8,000,000,

• the upper bound cost of executing insert() for a queue of size N is 21,000 +

26,538 + 6,638 * floor(log(2, N)), and

• within 2 weeks Ethereum would produce 80,640 blocks containing only

insertion operations,

the queue would contain at least 3,599,959 deposits. The number of deposits

could be higher if insert() uses less gas than the assumed upper bound.

Q: How long does it take to exit the 2 week volume?

A: Assuming:

• the block gas limit is 8,000,000,

• the queue contains 3,599,959 elements,

• the upper bound cost of executing delMin() for a queue of size N is 21,000 +

• 26,538 + 6,638 * floor(log(2, N)), and

• Ethereum blocks contain no other operations besides delMin(),

it would take 79,868 blocks (each containing between 43 and 90 exits), i.e.,

almost 2 weeks.

Recommendation: As exits of users' funds are critical in Plasma, we would like to

recommend extending the watcher with functionality that assesses and informs

users about:

• how long it would take to exit funds, and

• for a given user's funds, how many exits need to be processed before they

can exit.

Omisego Plasma MVP Contract Security Certificate

Test Results Automated Analyses

Test Suite Results

$ make test

python -m pytest

=============== test session starts ===============

platform darwin -- Python 3.6.4, pytest-3.4.2, py-1.5.2, pluggy-0.6.0

rootdir: /Users/mderka/Repos/omg/plasma-contracts, inifile:

plugins: cov-2.5.1

collected 79 items

tests/contracts/priority_queue/test_priority_queue.py

[13%]

tests/contracts/rlp/test_plasma_core.py

[22%]

tests/contracts/rlp/test_rlp.py ..

[25%]

tests/contracts/root_chain/test_challenge_standard_exit.py

[34%]

tests/contracts/root_chain/test_deposit.py

[43%]

tests/contracts/root_chain/test_exit_from_deposit.py

[49%]

tests/contracts/root_chain/test_fee_exit.py ..

[51%]

tests/contracts/root_chain/test_long_run.py s

[53%]

tests/contracts/root_chain/test_process_exits.py

[69%]

tests/contracts/root_chain/test_start_standard_exit.py

[79%]

tests/contracts/root_chain/test_submit_block.py ..

[82%]

tests/contracts/root_chain/test_tokens.py ..

[84%]

tests/utils/test_fixed_merkle.py

[100%]

=============== 78 passed, 1 skipped in 167.41 seconds ===============

rm -fr .pytest_cache

Code Coverage

We were unable to measure code coverage due to lack of automated tools.

Oyente

Repository: https://github.com/melonproject/oyente

Oyente is a symbolic execution tool that analyzes the bytecode of Ethereum

smart contracts. It checks if a contract features any of the predefined

vulnerabilities before the contract gets deployed on the blockchain.

Oyente Findings

Oyente reported integer overflow issues in the contract RootChain.sol. Upon

closer inspection, we classified them as false positives.

Mythril

Repository: https://github.com/ConsenSys/mythril

Mythril is a security analysis tool for Ethereum smart contracts. It uses concolic

analysis, taint analysis and control flow checking to detect a variety of security

vulnerabilities.

Mythril Findings

Mythril reported the following issues:

• the use of assert in place of require in SafeMath.sol functions. It is a

known and benign issue with former Open Zeppelin implementations.

• potential integer overflows in the contract RootChain.sol. Upon closer

inspection, we classified them as false positives.

• execution of the function transfer() on a user-provided token contract. As

described in the section Vulnerabilities, it may result in re-entrancy attacks

on the contract.

• multiple calls to transfer() in a single transaction in the contract

RootChain.sol in the function finalizeExits().

• violation of checks-effects-interactions pattern (described in the section

Vulnerabilities).

MAIAN

Repository: https://github.com/MAIAN-tool/MAIAN

MAIAN is a tool for automatic detection of trace vulnerabilities in Ethereum smart

contracts. It processes a contract's bytecode to build a trace of transactions to

find and confirm bugs.

MAIAN Findings

MAIAN reported no issues.

Securify

Repository: https://github.com/eth-sri/securify

Securify Findings

Securify reported the following issues:

• reentrant method call in the contract RootChain.sol (discussed in the

section Vulnerabilities)

• unrestricted write to storage in the contracts PriorityQueue.sol and

RootChain.sol. Upon closer inspection, we classified them as false

positives.

• division before multiplication in the function startExit() in the contract

RootChain.sol. Upon closer inspection, we classified it as a false positive.

• unsafe call to untrusted contract, i.e., execution of the function transfer()

on a user-provided token contract. As described in the section

Vulnerabilities, it may result in re-entrancy attacks on the contract.

• unsafe dependence on block information in the contract RootChain.sol.

Upon closer inspection, we classified it as a false positive.

The code mostly adheres to the specification. The specification lists simplifying

assumption and explains that certain features will be available in future iterations

of Plasma.

Code Documentation

The specification provides enough information to document the design and

functionality of this Plasma implementation. The code, on the other hand, lacks

functions and parameters descriptions. We recommend documenting the code to

make it easier it to understand.

Minor issues:

• contract Math.sol, line 6 says "Math operations with safety checks that

throw on error". There are no errors thrown from the function in this

contract.

• contract PlasmaRLP.sol, line 15 says “Public Functions”. All the functions

are marked as internal, not public.

Adherence to Specification

File Signatures

Contracts

Appendix

contracts/StandardToken.sol:

e7e12ad1dfa1bafacf6344fc9a224607d21022ca0c27bc6581cd6c5c3b09b452

contracts/RootChain.sol:

32d01c35688fa585e567c554dd8d4af46869f5ebe09ecfb8d14aec868352bf7b

contracts/ERC20.sol:

5145438d41545f1cccc95d55254f57b3bc81d68da3f9ef4d116bfae55d332104

contracts/Ownable.sol:

65c0baa6928524d0ed5e52d48896517f80ee4daf32567ead41129abb1f10c7d7

contracts/PlasmaRLP.sol:

1a44f5b4feb6b056fd8d74db6e251ddda03dba6b1adb7d8a9ddcf6bf78e60df6

contracts/SafeMath.sol:

e264a7d045e91dc9ba0f0bb5199e07ecd250343f8464cc78c9dc3a3f85b075ea

contracts/RLP.sol:

b19cb751b112df6019d47e51308c8869feecf1f02fad96c4984002638546d75d

contracts/ERC20Basic.sol:

5c1392929d1a8c2caeb33a746e83294d5a55d7340c8870b2c829f4d7f6ed9434

contracts/PlasmaCoreTest.sol:

5546ea35adf9b5125dd0ff31e181ea79a65c6fcc90cb07916bf1076ba3c858f8

contracts/ECRecovery.sol:

75ed455845e003bc54a192239eeccb55d7b903e6ad3e88d78e7179b54ab46f7f

contracts/Validate.sol:

3516c8eb6feb7aa15c2a3dbcc5e0af43d0b63ce55411dccc3dd2962807392e67

contracts/BasicToken.sol:

ef72ee7dadaea54025fd939d0bee23b0d29a278d29b4542360b5ecf783fecf68

contracts/PlasmaCore.sol:

059bc9060210e0d4ab536a52e66ded1252b7999c67c7dab8f4364432a0cae001

contracts/RLPTest.sol:

0eac6636e98d5f6a4f339136f6db7f41f7ac23221ae951b0e15e3eefa39cabe6

contracts/Merkle.sol:

edcb7231316beef842ad158d574f803a0ac1df755e84919f0f7a6a332dbea9b2

contracts/Math.sol:

2658a2d9ca772268a47dc3ca42b03e8c8181ff4667a4f980843588d0c5a70412

contracts/ByteUtils.sol:

ea966e98d3e3c4c484f3d144ca2e76e7acdc8dbae84e685bc554ce9de4a9ab01

contracts/MintableToken.sol:

cc4d0a06c40f86926ddcb5cb19bf8b219794313f6754b5b6be856b73465c835c

contracts/PriorityQueue.sol:

006123b56ea6adc32ad4878900e76456af6ae469baa79ad29b8c32adb88e47c3

Tests

tests/conftest.py:

708eb79cb3ae6cd24317ca43edafa4b6abcd2835696e942161ebe0eb027be25b

tests/contracts/root_chain/test_challenge_standard_exit.py:

b0391ba594526ee0f23e0233162a2c9dcc42ef28112ecf2053cb8c680722d059

tests/contracts/root_chain/test_deposit.py:

bac756caed71d8b1013b77bd96fba5c2ca6998b485cbc58a7c5f2722d12267fc

tests/contracts/root_chain/test_start_standard_exit.py:

6be00c1906f35dd4f812d5afb8a01953becd7d363c53555b80139cd20e61d76c

tests/contracts/root_chain/test_process_exits.py:

c29e79ac6ade42272e11a77c3c072d2d80d71edb023ba2c25b322d0d8d8a31c1

tests/contracts/root_chain/test_exit_from_deposit.py:

b2e9789729dc90931208d2692d28607fcd0e222f96f7da3c64b3fbe8551d4066

tests/contracts/root_chain/test_fee_exit.py:

725c394b7ccc9eabf4a15de95308a21147c062f36ecf53ad8fb21fe5c5491194

tests/contracts/root_chain/test_submit_block.py:

20dcdaa37a6636b3fd40c0d71ba81d52744eb2b2ba36ee9d36e1e41e5f55b0a3

tests/contracts/root_chain/test_tokens.py:

de487397040c3f61426d7c59583c8e85451ac49a48a20a163ec29c0fb67aab38

tests/contracts/root_chain/test_long_run.py:

e5ae985d426d00f87f7074e172f74d02e899fe68c801ed12b416b197ec3979da

tests/contracts/priority_queue/test_priority_queue.py:

0513902ae4a464312651742ebc07472ee1a925632f4d34692343331d79c46c6f

tests/contracts/rlp/test_rlp.py:

ea73d7293db958cef2664d167c623d8852fe3d5020ac8d1469905c164a5ff64c

tests/contracts/rlp/test_plasma_core.py:

edf18eed0362b2a2985ae3cf269146c763a07cb3a4c5a12e1ef0cdbe6d37dfdc

tests/utils/test_fixed_merkle.py:

088a8dfde088a9272f18daca6c798879990a57cd9e01c08e27705c91153f67bb

Steps Taken to Run the Full Test Suite and Tools

• Installed Truffle: npm install -g truffle

• Installed Ganache: npm install -g ganache-cli

• Installed the solidity-coverage tool (within the project's root directory): npm

install --save-dev solidity-coverage

• Ran the coverage tool from the project's root directory: ./

node_modules/.bin/solidity-coverage

• Flattened the source code using truffle-flattener to accommodate the

auditing tools.

• Installed the Mythril tool from Pypi: pip3 install mythril

• Ran the Mythril tool on each contract: myth -x path/to/contract

• Installed the Oyente tool from Docker: docker pull luongnguyen/oyente

• Migrated files into Oyente (root directory): docker run -v $(pwd):/tmp -

it luongnguyen/oyente

• Ran the Oyente tool on each contract: cd /oyente/oyente && python

oyente.py /tmp/path/to/contract

• Ran the MAIAN tool on each contract: cd maian/tool/ && python3

maian.py -s path/to/contract contract.sol

Quantstamp is a Y Combinator-backed company that helps to secure smart

contracts at scale using computer-aided reasoning tools, with a mission to help

boost adoption of this exponentially growing technology.

Quantstamp’s team boasts decades of combined experience in formal

verification, static analysis, and software verification. Collectively, our individuals

have over 500 Google scholar citations and numerous published papers. In its

mission to proliferate development and adoption of blockchain applications,

Quantstamp is also developing a new protocol for smart contract verification to

help smart contract developers and projects worldwide to perform cost-effective

smart contract security audits.

To date, Quantstamp has helped to secure hundreds of millions of dollars of

transaction value in smart contracts and has assisted dozens of blockchain

projects globally with its white glove security auditing services. As an evangelist

of the blockchain ecosystem, Quantstamp assists core infrastructure projects

and leading community initiatives such as the Ethereum Community Fund to

expedite the adoption of blockchain technology.

Finally, Quantstamp’s dedication to research and development in the form of

collaborations with leading academic institutions such as National University of

Singapore and MIT (Massachusetts Institute of Technology) reflects

Quantstamp’s commitment to enable world-class smart contract innovation.

About Quantstamp

Purpose of report

The scope of our review is limited to a review of Solidity code and only the source

code we note as being within the scope of our review within this report.

Cryptographic tokens are emergent technologies and carry with them high levels

of technical risk and uncertainty. The Solidity language itself remains under

development and is subject to unknown risks and flaws. The review does not

extend to the compiler layer, or any other areas beyond Solidity that could

present security risks.

The report is not an endorsement or indictment of any particular project or team,

and the report does not guarantee the security of any particular project. This

report does not consider, and should not be interpreted as considering or having

any bearing on, the potential economics of a token, token sale or any other

product, service or other asset.

No third party should rely on the reports in any way, including for the purpose of

making any decisions to buy or sell any token, product, service or other asset.

Specifically, for the avoidance of doubt, this report does not constitute

investment advice, is not intended to be relied upon as investment advice, is not

an endorsement of this project or team, and it is not a guarantee as to the

absolute security of the project.

Disclaimer

While Quantstamp delivers helpful but not-yet-perfect results, our contract

reports should be considered as one element in a more complete security

analysis. A warning in a contract report indicates a potential vulnerability, not

that a vulnerability is proven to exist.

Timeliness of content

The content contained in the report is current as of the date appearing on the

report and is subject to change without notice, unless indicated otherwise by QTI;

however, QTI does not guarantee or warrant the accuracy, timeliness, or

completeness of any report you access using the internet or other means, and

assumes no obligation to update any information following publication.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites

operated by persons other than Quantstamp Technologies Inc. (QTI). Such

hyperlinks are provided for your reference and convenience only, and are the

exclusive responsibility of such web sites' owners. You agree that QTI are not

responsible for the content or operation of such web sites, and that QTI shall

have no liability to you or any other person or entity for the use of third-party

web sites. Except as described below, a hyperlink from this web site to another

web site does not imply or mean that QTI endorses the content on that web site

or the operator or operations of that site. You are solely responsible for

determining the extent to which you may use any content at any other web sites

to which you link from the report. QTI assumes no responsibility for the use of

third-party software on the website and shall have no liability whatsoever to any

person or entity for the accuracy or completeness of any outcome generated by

such software.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are

subject to the confidentiality and feedback provisions in your agreement with

Quantstamp. These material are not to be disclosed, extracted, copied, or

distributed except to the extent expressly authorized by Quantstamp.

Disclosure

The repository implements tests using python instead of the standard Javascript

test suite. As the used toolset does not provide means of measuring the test

coverage, the Quantstamp team inspected the implemented tests manually. The

implemented tests all pass and we consider the individual test cases reasonable.

We found one issue in the test case

test_priority_queue_insert_spam_does_not_elevate_gas_cost_above_200

k (file test_priority_queue.py, line 62). The statement while gas_left < 0

should be replaced by while gas_left > 0.

https://www.quantstamp.com/
https://github.com/omisego/elixir-omg/blob/develop/docs/tesuji_blockchain_design.md
https://github.com/omisego/plasma-contracts
https://github.com/omisego/plasma-contracts/compare/dbbdaef..3cc6097
https://github.com/omisego/plasma-contracts/compare/dbbdaef..3cc6097
https://github.com/melonproject/oyente
https://github.com/ConsenSys/mythril
https://github.com/alcuadrado/truffle-flattener
https://github.com/MAIAN-tool/MAIAN
https://github.com/eth-sri/securify
https://solidity.readthedocs.io/en/v0.4.25/security-considerations.html
https://solidity.readthedocs.io/en/v0.4.25/security-considerations.html
https://github.com/melonproject/oyente
https://github.com/ConsenSys/mythril
https://github.com/MAIAN-tool/MAIAN
https://github.com/eth-sri/securify

