7 OpenZeppelin | news & events

Compound Alpha
Governance System Audit

FEBRUARY 25, 2020 | IN SECURITY AUDITS | BY
OPENZEPPELIN SECURITY

.$ Compound

Compound Governance
System Audit

Z OpenZeppelin | security

Compound Finance is a protocol deployed on the
Ethereum network for automatic, permissionless, loans
of Ether and various ERC20 tokens. It is one of the
most widely used decentralized finance systems in the

ecosystem.

Audit history and current
scope

In this audit, we looked into Compound'’s alpha version
of their governance system and its associated COMP
token. While the initial audited commit is
6858417c91921208c0Ob3ff342b11065c09665b1b , later the
Compound team provided a follow-up commit
f5976a8aldcf4el4ed35e5581bade8efob5d38ea which
fixed some of the issues identified in the original
commit. The scope included the newly introduced
Compound Governance Token (COMP) and Governor

Alpha contracts.

So far we have audited several phases of Compound’s

contracts. A brief summary of each phase is included

below.

1. A subset of Compound'’s contracts in commit
f385d71983ae5c5799faae9b2dfead3e5cf75262 of
Compound’s public repository. Read the report’

summary.

2. A patch that introduced a time delay for critical
admin functions and the ability to pause others.
That patch is reflected in commit

681833a557a282fba5441b7d49edb@5153bb28ec Of

Compound'’s public repository. Read the report.

3. Avrefactor of the core CToken contract with the
purpose of accommodating underlying tokens that
may extract a fee when transferring tokens (e.g.,
USDT). This refactor is presented in commit

2535734126c7c26e9bc452f27f45c5408acff71f of
Compound'’s private repository. The report is not

available to the public yet.

4. The difference between the code at commit
2535734126c7c26e9bc452f27f45c5408acff71f of
Compound'’s private repository and commit
bcfobc7b@0e289f9b661a0ae934626e018188040 Of
their public repository. These changes introduced
the ability to handle underlying ERC20 tokens
whose implementations can be upgraded (e.g.,

DAI). The report is not available to the public yet.

5. The difference between commit
bcfObc7b@0e289f9b661a0ae934626e018188040 and
commit
9eab4ddd166a78b264ba8006f688880085eeed13 in
Compound’s public repository. The audit included
changes to the JumpRateModel contract and the
two newly added files cDaiDelegate.sol and
DAIInterestRateModel.sol . The report is not

available to the public yet.

High-level overview of the
changes

The audited code change introduces a new
governance system for Compound, including the
Compound Governance Token (COMP) as well as an
Alpha version of the core governance contract,
respectively implemented in the audited comp and
GovernorAlpha contracts. The system should
eventually fully replace Compound'’s administrator,
now empowered to trigger sensitive modifications in
the protocol via the a time lock mechanism in the
Timelock contract. Since this is a preliminary version
of the governance system, the GovernorAlpha
contract is administered by a highly-privileged

account, called guardian, with powers to:

e Cancel any non-executed proposal via the cancel

function.

e Bypass the governance mechanism to change the
Timelock ‘s admin at will (calling the
GovernorAlpha contract
__queueSetTimelockPendingAdmin and

__executeSetTimelockPendingAdmin functions).

e This means that the Governor’'s guardian can
override any queued proposal that attempts to
change the Timelock contract's admin (i.e., a
proposal that calls setPendingAdmin), as the
guardian can call
__queueSetTimelockPendingAdmin with whatever

eta they decide.

e Make the GovernorAlpha contract accept
administrative powers over the Timelock contract,

calling the __acceptAdmin function.

e Abdicate, calling the __abdicate function.

The new administrator of the governance system is
temporary, and is expected to abdicate once the

system reaches a more stable stage.

The Compound Governance Token is intended to be a
standard ERC20 token with extended functionality to

allow token holders to delegate their votes, as well as

query an account'’s total amount of votes at a given

block number.

The Compound Governor Alpha contract allows
accounts that meet a certain vote threshold to submit
proposals, which can then be voted on by delegated
vote holders. Proposals with enough votes can be
queued and executed in Compound'’s Timelock
contract. Compound’s governance system works
closely with the Timelock contract to push proposal
transactions into the Timelock , while being overseen

by the guardian.

Following we present our findings, in order of

importance.

Critical severity

None.
High severity

[HO1] Approved proposal may be
impossible to queue, cancel or
execute

The propose function of the GovernorAlpha contract
allows proposers to submit proposals with an
unbounded amount of actions. Specifically, the
function does not impose a hard cap on the number of
elements in the arrays passed as parameters (i.e.,

targets , values, signatures and calldatas).

As a consequence, an approved proposal with a large
number of actions can fail to be queued, canceled, or
executed. This is due to the fact that the queue,
cancel and execute functions iterate over the
unbounded targets array of a proposal, which
depending on the amount and type of actions, can

lead to unexpected out-of-gas errors.

So as to avoid unexpected errors in approved
proposals, consider setting a hard cap on the number

of actions that they can include.

[HO2] Queued proposal with
repeated actions cannot be
executed

The GovernorAlpha contract allows to propose and
queue proposals with repeated actions. That is, two or
more actions in a proposal can have the same set of

target , value, signature and data values.

Assuming a proposal with repeated actions is
approved by the governance system, then each action
in the proposal will be queued individually in the
Timelock contract via subsequent calls to its
queueTransaction function. All queued actions are
kept in the queuedTransactions mapping of the
Timelock contract for future execution. While each
action is identified by the keccak256 hash of its
target , value, signature, data and eta values, it
must be noted that all actions in the same proposal
share the same eta . As a consequence, repeated
actions always produce the same identifier hash. So a
single entry will be created for them in the

queuedTransactions mapping.

When the time lock expires, the whole set of actions in
a proposal can be executed atomically. In other words,
the entire proposal must be aborted should one of its
actions fail. To execute a proposal anyone can call the
execute function of the GovernorAlpha contract. This
will in turn call, for each action in the proposal, the
executeTransaction function of the Timelock
contract. Considering a proposal with duplicated
actions, the first of them will be executed normally and
its entry in the queuedTransactions mapping will be
set to false . However, the second repeated action
will share the same identifier hash as the first action.

As a result, its execution will inevitably fail due to the

require statement in line 84 of Timelock.sol , thus

reverting the execution of the entire proposal.

Consider modifying how each action in a proposal is
identified so as to avoid clashes in their identifiers. This
should allow for each action in a proposal to be
identified uniquely, therefore enabling Compound’s
governance system to execute queued proposals that

contain repeated actions.

Update: Fixed in the follow-up commit
f5976a8aldcf4elded35e5581bade8ef6b5d38ea which
introduced a change to explicitly disallow proposals with
repeated actions to be queued in the Timelock

contract.

Medium severity

[M01] GovernorAlpha contract
does not fully match
specification

e The proposalApproved(uint256): bool function

mentioned in the specification is not implemented.

e According to the specification, a proposal can only
succeed when, among other conditions, “For votes
are greater than the quorum threshold”. However,
in the implementation a proposal is considered
successful when votes in favor are equal or greater

than the quorum threshold.

e According to the specification, the GovernorAlpha
contract should have a maximum number of
operations that a proposal can contain. However,
the audited implementation does not impose any
limit on the number of actions (see propose
function). This may allow proposers to submit
proposals that may never be queued, canceled or
executed (as explained in issue [HO1] Approved
proposal may be impossible to queue, cancel or

execute).

Consider applying the necessary modifications to the
code and / or to the specification so that they fully
match. Should any deviation be intentional, consider
explicitly documenting it with docstrings and inline

comments.

[M02] Lack of allowance front-
running mitigation in ERC20
token

The comp contract is an ERC20 token contract that
inherits from the EIP20Interface interface. However,
it does not implement functions to mitigate the known
ERC20 allowance front-running issue. This means that
every token holder approving tokens to other accounts

might be vulnerable to the front-running attack.

Consider implementing functions to safely increment

and decrement approved amounts. For reference, see
functions increaseAllowance and decreaseAllowance
in OpenZeppelin's ERC20 de-facto standard

implementation.

[M0O3] Proposal execution not
handling returned data

The public execute function of the GovernorAlpha
contract allows anyone to execute a queued proposal.
Each action contained in the proposal will trigger a call
to the executeTransaction function of the Timelock
contract. The executeTransaction function returns a
bytes value containing whatever data is returned by
the call to the target address. It is important to note
that the data is never logged in the emitted
ExecuteTransaction event, thus it should be handled
by the caller to avoid losing it. However, the returned
data is not handled by the execute function of the
GovernorAlpha contract. As a consequence, relevant

data returned by the proposal’s actions may be lost.

Consider handling the data returned by the

subsequent calls to the executeTransaction function.

Potential courses of action to be analyzed include
logging the data in events, or returning it to the

execute function’s caller in an array of bytes values.

Low severity

[LO1] Lack of indexed
parameters in events

None of the parameters in the events defined in the
GovernorAlpha contract are indexed. Consider
indexing event parameters to avoid hindering the task
of off-chain services searching and filtering for specific

events.

[LO2] Storage modification in
require statement

Inside the require statementin line 143 of comp.sol,
the signatory’s nonce is incremented right after being
compared with the given nonce. In other words, the
require statement fails if the given nonce is different
from the one stored in the nonces mapping before it
is incremented by one. Yet this subtlety of the
language might no be caught by all readers, which can
lead to confusions and errors in future changes to the

code base.

To favor readability, consider incrementing the nonce
outside the mentioned require statement, right after

it has been verified.

[LO3] Missing docstrings

All functions in the GovernorAlpha contract lack
documentation. This hinders reviewers’ understanding
of the code’s intention, which is fundamental to
correctly assess not only security, but also correctness.
Additionally, docstrings improve readability and ease
maintenance. They should explicitly explain the

purpose or intention of the functions, the scenarios

under which they can fail, the roles allowed to call

them, the values returned and the events emitted.

Consider thoroughly documenting all functions (and
their parameters) that are part of the contract’s public
API. Functions implementing sensitive functionality,
even if not public, should be clearly documented as
well. When writing docstrings, consider following the

Ethereum Natural Specification Format (NatSpec).

[LO4] Lack of input validation

e The approve function of the comp contract does
not ensure that the spender address is not zero.

See OpenZeppelin's implementation for reference.

e The propose function of the GovernorAlpha
contract allows the description parameter to be

empty.

Consider implementing require statements where

appropriate to validate all user-controlled input.

[LO5] Not declaring return types
in functions with return
statements

Public functions delegate and delegateBySig of the
Comp contract include a return statement at the end
of their execution, although they do not explicitly
declare return types in their definition. Moreover, both
functions attempt to return the result of the internal
_delegate function, which does not declare return

types nor returns any value.

Consider removing the return statements of the
delegate and delegateBySig functions, keeping in

both cases the internal call to the _delegate function.

[LO6] Undocumented, untested,
custom behavior in transfer of
ERC20 token

When the transfer and transferfFrom functions of
the comp token are called, they internally call the
_transferTokens function. This internal function can
execute additional actions that are not part of the
ERC20 standard. In particular, if the source and
destination have different delegates registered, the
_decreaseVotes and _increaseVotes functions are
executed. This means that upon a transfer of tokens,

delegates’ votes amounts may be updated.

While the described custom behavior is fundamental
to Compound'’s governance system, it was found to be

undocumented and untested.

Consider explicitly explaining that delegates’ votes can
be updated in the docstrings of transfer and
transferFrom functions. Furthermore, consider
adding related unit tests in CompTest.js to ensure

this sensitve feature works as expected.

Notes & Additional
Information

[NO1] Missing units

To avoid errors in future changes to the code base,
consider using an inline comment to clearly state in

which units the votingDelay is measured.

[NO2] Not explicitly defining
maximum allowance

To favor readability, consider declaring a constant
MAX_ALLOWANCE_AMOUNT oOr MAX_UINT256 to be used in
the transferfFrom function of the comp contract

instead of uint(-1) .

[NO3] Declare uint as uint256

To favor explicitness, all instances of uint should be

declared as uint256 .

[NO4] Inconsistent coding style

There are minor deviations from Compound’s coding

style. In particular:

e Public functions __acceptAdmin, _ abdicate,
__queueSetTimelockPendingAdmin and
__executeSetTimelockPendingAdmin of the
GovernorAlpha contract are unnecessarily

prepended with double underscores.

e The if statementin line 234 of
GovernorAlpha.sol is missing opening and closing

braces.

e Internal functions getChainId in GovernorAlpha
and comp contracts should be prepended with an

underscore to explicitly denote their visibility.

To favor readability, consider always following a
consistent coding style throughout the entire code

base.

[NO5] Naming

e The _ acceptAdmin function of the
GovernorAlpha contract should be renamed to

__acceptTimelockAdmin .

e The NewProposal event of the GovernorAlpha
contract should be renamed to ProposalCreated
to be consistent with other proposal-related events
(e.g., ProposalCanceled , ProposalQueued and

ProposalExecuted)

[NO6] Typos
In the comp.sol file:

e Line 33 should say each account's instead of

each accounts .

e Lines 57 and 60 should say that's instead of

thats .

e Line 57 should say its delegate instead of their

delegate .

In the README.md file:

e Copmtroller should say Comptroller in the
“Governor Alpha” subsection of the “Contracts”

section.

[NO7] Undocumented use of
uint9é6 type

The comp contract defines a Checkpoint struct to
represent each checkpoint that marks an account’s
number of votes from a given block. This struct
declares the number of votes as a uint96 type to
efficiently pack the struct data into 128 bits. Yet, this
argument is currently not documented in the code.
Note that the uint96 type is also used in a few other
places e.g. the Receipt struct of the GovernorAlpha
contract, as well as the balances, allowances and

checkpoints of the comp contract.

Consider explicitly documenting the use of unusual
Solidity types with inline comments to make the code
more self-explanatory, thus favoring the project’s

readability.

[NO8] Voting period assumes
block frequency to calculate
time

According to the GovernanceAlpha contract, the
voting period is expected to last 17280 blocks, which
given the current block time (around 15 seconds),
would map to approximately 3 days. The number of
blocks that the voting period lasts is currently
hardcoded and cannot be modified by any means.
However, it is known that Ethereum'’s “difficulty bomb”
may increasingly make mining more difficult, thus
increasing the average block time (see Etherscan’s

average block time for reference). As a consequence,

the voting period could eventually last much longer

than expected.

Consider adding the necessary logic in the
GovernorAlpha contract so that the voting period time
may be adjusted via governance proposals if ever

needed.

[NO9] Redundant boolean check

Line 234 of GovernorAlpha.sol explicitly compares a
boolean value to true . This is a redundant operation
because the result will be equivalent to the boolean
value itself. Consider removing the redundant

comparison.

[N10] VoteCast event does not
log the voter’'s address

Every time voters cast their votes for a proposal calling
the castVote or castVoteBySig functions, a
VoteCast event is emitted. However, this event does
not currently log the voter's address, therefore

hindering off-chain tracking of votes by voter.

Consider logging the address of the voter in the

VoteCast event.

[N11] Contracts do not compile
with solc 0.5.12

The comp and GovernorAlpha contracts specify a
compiler version equal or greater than solc 0.5.12.
However, as seen in the output below, both contracts

fail to compile with solc 0.5.12:

$ solc --version
solc, the solidity compiler commandline inter
face

Version: ©.5.12+commit.7709ece9.Linux.g++

$ solc --allow-paths . --evm-version istanbul

Governance/*.sol

Governance/Comp.sol:2:1: Warning: Experimenta
1 features are turned on. Do not use experime
ntal features on live deployments.

pragma experimental ABIEncoderV2;
Governance/GovernorAlpha.sol:2:1: Warning: Ex
perimental features are turned on. Do not use
experimental features on live deployments.
pragma experimental ABIEncoderV2;
Governance/Comp.s0l1:282:20: Error: Variable n
ot found or variable not lvalue.

assembly { chainId := chainid() }
Governance/GovernorAlpha.so0l:299:20: Error: V
ariable not found or variable not lvalue.

assembly { chainId := chainid() }

Consider only allowing compilation with versions

greater than 0.5.12.

[N12] Inconsistent style for
validating proposal state

The style for validating proposal state in the cancel
function of the GovernorAlpha contract could be
simplified to favor consistency with similar state
validations in functions execute and queue . In
particular, given that the state local variable is not
used later in the cancel function, the state function

can be called inside the require statement.

[N13] Incorrect error messages
in require statements

Two require statements contain incorrect error

messages. In particular:

e Inline 258 of GovernorAlpha.sol : castVote

should say _castvote .

e Inline 261 of GovernorAlpha.sol : castVote

should say _castvote .

Consider fixing these error messages to avoid

confusions during debugging.

Conclusion

No critical and two high severity issues were found.
Some changes were proposed to follow best practices

and reduce potential attack surface.

Security Audits

e If you are interested in smart contract security, you can
continue the discussion in our forum, or even better,

join the team &

e If you are building a project of your own and would like

to request a security audit, please do so here.

RELATED POSTS

éﬁ Compound ,éﬁ Compound

. Multicollateral DAl and
Compound Patch Audit DAI Savings Rate integration

Z OpenZeppelin | security Z OpenZeppelin | security

SECURITY AUDITS SECURITY AUDITS

Compound Finance — Compound Finance —
Timelock Audit MCD & DSR Integration

The Compound team asked us to audit a The Compound team asked us to audit

patch of their smart contract code. We their integration of Multi-Collateral Dai
examined the code and... and the Dai Savings...
READ MORE READ MORE

@ Compound

Compound Finance Audit
Summary

Z OpenZeppelin | security

SECURITY AUDITS

Compound Finance Audit
Summary

Compound Finance is a protocol, currently
deployed on the Ethereum network, for

automatic, ...

READ MORE

Contracts Security Audits Docs Website
Defender Forum About
Ethernaut Jobs

Logo Kit

