7 OpenZeppelin | news & events

Origin Dollar Audit

OCTOBER 25, 2021 | IN SECURITY AUDITS | BY
OPENZEPPELIN SECURITY

2RIGIN

Origin Dollar Audit

Z OpenZeppelin | security

The Origin Protocol team asked us to review and audit
their Origin Dollar smart contracts. We looked at the

code and now publish our results.

Scope

We audited commit
bf4ff28d5944ecc277e66294fd2c702fee5cd58b oOf the
Origin-Dollar repository. The scope includes all files in
the following directories within

contracts/contracts/ , except specified exclusions:

buyback/
° flipper/
o liquidity/

e oracle/, except ChainlinkOracle.sol and

MixOracle.sol
U strategies/
e token/
° utils/

° vault/

In addition, imported interfaces were in scope. All
other project files and directories (including tests),
along with external dependencies and projects, were
excluded from the scope of this audit. External code
and contract dependencies were assumed to work as

documented.

System overview

Origin Dollar (symbol: OUSD) is an ERC-20 compliant
stablecoin backed by other stablecoins. The project is
currently live, with OUSD deployed at
0x2A8e1E676Ec238d8A992307B495b45B3fEAa5e86
and the vault (for user interaction) deployed at
OxE75D77B1865Ae93c7eaa3040B038D7aA7BCO2F70.
Additional project addresses can be found on their

registry.

OUSD stays fully collateralized and maintains a 1:1 peg
to USD (approximated by the underlying DAI, USDC,
and USDT) by taking favorable exchange rates when
converting between OUSD and DAI, USDC, USDT via
minting or redeeming, and investing that collateral to
earn yield. The yield earned by the project is
distributed to OUSD owners and a trustee address in

the form of increased OUSD supply.

Users can mint OUSD by depositing either DAI, USDC,
or USDT, which goes into the project’s vault. The
amount of OUSD minted depends on the current price
of DAI, USDC, or USDT, as reported by Chainlink, in
USD terms. The Origin Dollar project caps the value of
DAI, USDC,and USDT at 1 USD, such that no more than
1 OUSD can be minted in exchange for 1 DAI, USDC,
or USDT.

The project invests the DAI, USDC, and USDT into
either Aave, Compound, or Curve to earn yield via the
strategy contracts. Each underlying token (either DAI,
USDC, and USDT) has a default strategy contract to
which it is allocated. The project balances the

underlying funds between the vault and strategy

contracts, using a buffer, such that the vault remains

liquid while most funds continue to earn yield.

Due to safety considerations, only externally owned
accounts earn yield by default. However, contract
addresses can opt-in to rebasing to share in the yield
earned by the strategies, which will periodically
increase the number of OUSD owned. The rebase
process can also distribute a portion of the yield to the
trustee. Currently, the trustee is a contract that
implements an OGN buyback program: the OUSD is
traded for OGN tokens through Uniswap to create buy

pressure.

Users can redeem OUSD from the vault, receiving a
pro-rata share of the value of DAI, USDC, and USDT in
proportions equal to those held by the project. The
price of the stablecoins is taken into account at
redemption such that their value is capped at no more
than 1 OUSD. Redeeming OUSD through the vault will
incur a fee set by governance. The purpose is to

incentivize long-term deposits to encourage stability.

In addition to these core contracts, we also reviewed

some utility contracts that support auxiliary behaviors:

e There is a Flipper contract that is provided to users
as a way to swap in and out of OUSD cheaply for
any of DAI, USDC, or USDT at a fixed 1:1 rate. This
contract will be used as an alternative way to route
user transactions originating from the web app.
This contract may become illiquid on one side (e.g.,
contain 0 OUSD balance), and thus sometimes

provides limited swap routes.

e QUSD is governable and upgradeable. The Origin
team is currently planning an upgrade to increase
the resolution of rebasing calculations from 18
decimals to 27 decimals. The OUSD token itself will
still retain 18 decimals of precision and user

balances should not change.

e There is a mechanism to reward users that provide

OUSD liquidity to third-party systems. The Origin

team intends to run campaigns to distribute a
specified number of OGN tokens amongst all users
that lock approved LP tokens, thereby proving they

contributed (or incentivized) liquidity.

Privileged roles

There are a variety of roles to manage access control,
primarily used on the critical vault and strategy
functions. There is a governor role, currently assumed
by the 5-of-8 multisig at
Oxbe2AB3d3d8F6a32b96414ebbd865dBD276d3d899,
which is the administrator of the governor contract at
0x830622bdd79cc677ee6594e20bbda5b26568b781 .
There is also a strategist role, currently assumed by the
2-0f-9 multisig at
OxF14BBdf064E3F67f51cd9BD646aE3716aD938FDC. In
addition, many functions are restricted to only being

called by the vault.

There is overlap between these roles’ capabilities. The
most notable functions callable by either the governor,

strategist, or vault are provided below.
Notable functions callable by the governor address:

e queue, cancel,and upgradeTo for upgrade

proposals

o setStrategistAddr , approveStrategy ,

removeStrategy , and setAssetsDefaultStrategy
° setPriceProvider and setUniswapAddress
o setTrusteeAddr
J setRedeemFeeBps

e setVaultBuffer used to balance funds between

the vault and strategies

e transferTokens from the buyback contract to the

governor address

e withdrawAll from the flipper contract to the

governor address

setAutoAllocateThreshold and
setRebaseThreshold to handle automatic

allocate and rebase while minting

setRewardTokenAddress ,
setRewardLiquidationThreshold , and harvest to

collect reward tokens from yield platforms
functions to pause/unpause deposits and rebasing

withdrawAllFromStrategy and
withdrawAllFromStrategies to withdraw all assets
from any or all strategies and send them to the

vault

startCampaign and stopCampaign for liquidity

reward programs

Notable functions callable by the strategist address:

setVaultBuffer used to balance funds between

the vault and strategies

pauseRebase , pauseCapital , and unpauseCapital

to stop deposits

withdrawAllFromStrategy and
withdrawAllFromStrategies to withdraw all assets

from any or all strategy and send them to the vault

harvest to collect reward tokens from yield

platforms and swap them for stablecoins

Notable functions callable by the vault address:

mint , burn, and changeSupply of OUSD
swap OUSD for OGN in the buyback contract

harvest to collect reward tokens from yield
platforms and collectRewardToken to transfer

them to the vault

deposit , depositAll and withdraw, into or out

of strategies

Security model and trust
assumptions

OUSD is governable and upgradeable. The governance
system can be used to change many critical factors, as
well as the pricing oracle, giving governance ultimate
powers. Since the system is already deployed, we
considered the current value of critical factors when
assessing findings. We assume governance will act in
the protocol's best interest, would not approve
malicious or ill-advised upgrades, and maintains

sensible values for sensitive variables.

The project also has many integrations, thus, it relies
on trusting numerous systems to act in a well-defined
manner. For example, the system relies on trusting
Chainlink for accurate and available pricing, as well as
trusting that Uniswap, Aave, Compound, and Curve will
work as intended for swapping, depositing,
withdrawing, and other investing functions. External
code and contract dependencies were assumed to

work as documented.

In addition, OUSD is fully backed by DAI, USDC, and
USDT. Thus, the value of OUSD depends on the
resilience of these underlying stablecoins. If, for
example, DAl were to lose it's peg from USD and never
return, this would cause economic issues for OQUSD,
despite the automated mitigations. In such a case, an
upgrade may be necessary to change OUSD token
dynamics to maintain a 1:1 peg with USD.

Here we present our findings.

Update

Most of the following issues have been either fixed,
partially fixed, or acknowledged by the Origin Team.
Our analysis of the mitigations is limited to the specific
changes made to cover the issues, and disregards all
other unrelated changes in the pull requests and in the

codebase.

Critical severity

[CO01] Attacker can steal a
portion of the reward tokens and
accrued yield

The _allocate function in the vaultCore :

e harvests reward tokens and swaps them on
Uniswap in exchange for USDT, using WETH as an

intermediary.

e callsthe swap function on the Buyback contract,
which swaps all of its OUSD on Uniswap in

exchange for OGN.

In both cases, the protocol uses the
swapExactTokensForTokens function on Uniswap’s
UniswapV2Router@2 contract and sets the minimum
number of tokens to receive to zero. In other words,
there is no slippage protection, which makes the

trades vulnerable to price manipulation.

As an example, consider a scenario where the vault is
on the verge of collecting and liquidating its

Compound reward tokens, COMP. An attacker could:

1. Flash-borrow a huge amount of COMP and sell it in
the COMP/WETH Uniswap pool to significantly
lower the COMP price

2. Call the mint or mintMultiple functions to
trigger an allocation and swap the harvested
COMP tokens. Due to the price movement in step
1, the contract will receive less than the market

value. This also lowers the COMP price further.

3. Sell the WETH back in the Uniswap pool to recover
the COMP, which will be even cheaper due to step
2.

4. Repay the loan. Since the attacker buys COMP at a
cheaper rate than it was initially sold, they profit

the difference.

Similarly, the attacker can perform a flash-loan to
borrow OUSD and manipulate the OUSD/OGN price in

Uniswap (by moving the OUSD/USDT and/or the
OGN/WETH price), to extract some of the value of the
OUSD swapped by the Buyback contract. In the worst-
case scenario, the attacker would perform this same
attack in the same transaction for all the reward tokens
collected from all the strategies, and for the OUSD
swapped by the Buyback contract.

Note that the profit that the attacker can make from
this attack depends on the amount of money
deposited in the strategies, since the amount of
reward tokens collected and the yield accrued are
proportional to this amount. Consequently, the
feasibility of this attack increases as the platform’s

investments grow.

Additionally, it is worth mentioning that this same
attack can be performed without using a flash-loan, by
sandwiching a call to the allocate function, which
can be called by anyone, or by sandwiching a call to
any of the versions of the harvest function in the
VaultAdmin contract, which can be called by the

governor or the strategist.

Consider adding slippage protection to all calls to the
swapExactTokensForTokens function from the

UniswapV2Routere2 contract.

Update: Fixed in PR#624 and PR#724. However, the
BuybackConstructor still references the Uniswap V2

router.
High severity

[HO1] Resolution upgrade
inconsistency

The OUSD token achieves its rebasing functionality by
tracking credit balances and scaling them by a

conversion factor to retrieve the corresponding OUSD
token balances. The OuSDResolutionUpgrade contract

is designed as a temporary logic contract that replaces

the token functionality with mechanisms to increase
the precision of the conversion factors. In particular,
there is a function to update the global parameters
and a separate function to upgrade the individual user

accounts in batches.

To avoid upgrading the same account multiple times,
an upgrade flag is set for each account. Similarly, the
upgrade flag is set for the zero address to indicate that
the global parameters have been updated. There is no
access control on either of these functions. This means
that an attacker can include the zero address in a
batch of account upgrades, which will set its flag and
prevent anyone from upgrading the global state. This
could produce an inconsistent state where a subset of
the accounts use the new resolution, while the global

parameters remain unchanged.

Consider restricting the upgradeAccounts function to

non-zero account.

Update: Fixed in commit 95e8¢90.

[HO2] Valid redemptions may fail

The _calculateRedeemoutputs function in the
VaultCore contract calculates the amount of each
asset to be redeemed based on the total amount held
by the vault and strategies. For the latter, this amount
is calculated by summing the balance of each asset in
each strategy, without considering whether this

strategy is the asset’s default strategy.

The _redeem function uses the calculated redeem
outputs, then iterates through the approved assets to
try to withdraw the total asset balance (across all
strategies) from only the asset’s default strategy,
unless the vault already has a sufficient balance for the

redemption.

Since the output ratios include balances held in non-
default strategies, and _redeem only withdraws from

the default strategy, this mismatch may cause the

redemption process to fail in some scenarios where
the protocol has enough liquidity. This can happen, for
instance, when setting a new default strategy for a
given asset without reallocating a sufficient amount
from the old default strategy to the new default
strategy.

Consider using the asset balance in all strategies to
pay back the caller, instead of just the default strategy.
Alternatively, consider ensuring that each asset is only

invested through its default strategy.

Update: Not fixed. The Origin team states:

We'll keep this the way it is. Some yield earning
protocols are inherently attackable when users can
force OUSD to move funds into and out of them,
either from entrance/withdrawal fees or economic
attacks. In order to be able to use these, we have to
have funds that can’t be deposited to or withdraw
under direct user control. The allocations into and
out of non-default strategies is currently handled
by the strategist role, and we are planning on

transitioning this funds allocation to community

governance.

[HO3] Manipulable rewards
calculations

When a user deposits LP tokens into the
LiquidityReward contract, they are entitled to a
proportional share of subsequently released rewards,
which is tracked as a credit of the equivalent share of
all accumulated rewards and a debt of the
corresponding rewards that were released before the
deposit, which the user should not receive. The
aggregate effect is calculated using the contract’s LP

token balance and the totalRewardDebt .

However, if a user simply transfers LP tokens to the

contract directly, their tokens will be captured in the

contract’s balance but not the totalRewardDebt . In

such a scenario:

e startCampaign will overestimate the total pending
rewards, which will increase the OGN necessary to

start the campaign.

e The totaloutstandingRewards function will return

an overestimate for the same reason.

Consider tracking the amount of LP token deposits so
valid deposits can be distinguished from the contract

balance.

Update: Fixed in PR#688.

[HO4] Incorrect slippage in
Curve 3Pool strategy

When withdrawing funds from the
ThreePoolStrategy , LP tokens are exchanged for the
underlying asset. To control slippage, a minimum asset

amount to receive is specified.

However, the actual parameter does not match the
intended usage. Instead, it is calculated as a fraction of
the burned LP tokens, scaled so it has the same
precision as the asset to withdraw. This is not a
meaningful value, and when interpreted as an asset
quantity, it may be more than the burned LP tokens
are worth. In this scenario, the liquidity removal will fail

unexpectedly.

To avoid this scenario, consider setting this parameter
to _amount . Given the way the number of tokens to
burn was calculated, they will always exchange for
_amount of assets at least. This would match the
current behavior while avoiding the possibility of an

unnecessary failure to withdraw.

Unfortunately, this suggestion does not protect
against a front-running attack or sandwich attack,
where the instantaneous state of the Curve protocol

differs significantly from market equilibrium. To

mitigate this, the ThreePoolStrategy contract would
need the fair market rate of LP tokens denominated in

the asset to withdraw.

Update: Partially fixed by PR#716. The withdraw
function will now remove at least _amount from Curve'’s
3Pool. Note, however, that the withdraw function still
does not protect against front-running or sandwich

attacks.

[HO5] AAVE inconsistency

The AaveStrategy contract uses the version 2
interface in anticipation of a future reconfiguration of
the investment strategies. However, we identified two

inconsistencies:

e the strategy attempts to grant an allowance to the
non-existent Lending Pool Core, instead of the
Lending Pool, which would make the strategy
unusable and prevent OUSD token mints whenever

the strategy is in use.

e the strategy uses the outdated redeem function in
the withdrawAll function, which is called when

the strategy is removed.

When this was raised with the Origin team they
indicated that they had already identified and
addressed the first inconsistency in a subsequent
commit. Consider using the new interface when

withdrawing all tokens.

Update: Fixed in commit 650913e.

Medium severity

[M0O1] Mint after balance check

The collectRewardToken function of the
ThreePoolStrategy contract mints any outstanding
reward tokens and transfers its reward balance to the

vault. However, the outstanding tokens are minted

after the reward balance is retrieved and the event is
emitted. This means that the newly minted tokens are
not sent to the vault, and will only be transferred in a

subsequent call to collectRewardToken .

Consider minting the new reward tokens first to ensure

they are included in the transfer.

Update: Fixed in PR#640.

[M02] Not enforcing a default
strategy for new assets

The supportAsset function allows the governor to
add a new asset to the vaultCore contract, but it
does not enforce a default strategy for it by calling the

setAssetDefaultStrategy .

This can potentially cause a misbehavior when
allocating assets from the vault to the strategies. The
new asset can still be deposited through the mint or
mintMultiple functions, and it will contribute to the
utilization of the vault buffer, but it will not be
deposited to any strategy. This skews the investment
ratio so a higher percentage of all the other assets will
be moved to the strategies, draining the buffer that

should be used for future redemptions.

Consider enforcing configuration of the asset’s default

strategy in the supportAsset function.

Update: Not fixed. The Origin team states:

We'll keep this the way it is. This won't lose any
funds if it's not set. The vault still operates without
a default strategy (both places it is used, allocating
and redeeming check if this is set and skip it if it is
not). It is possible that there may be temporary
times in DeFi when the Origin Dollar doesn't trust
any lending protocol/strategy, and goes to purely

holding assets to increase stability until things

settle down.

[M03] Not checking asset
balance in strategy before
removal

The removePToken function from the
InitializableAbstractStrategy lets the governor

remove an asset from the strategy, by:

e Removing the asset address from the
assetsMapped array (e.g., DAI, USDT, USDC

addresses).

e Setting the assetToPToken mapping for that

particular asset address to address(®) .

However, there are no checks for whether the strategy
still invests the asset in the underlying platform before
removing it. If the asset is removed, this invested
amount will be disregarded when checking the total
amount of assets held by a strategy, which is used to
perform allocations, or when calculating the redeem
outputs, which is used to perform redemptions.
Additionally, the invested amount will be disregarded
in the withdrawAll functions defined on each child

contract.

Consider either reverting if the strategy still invests the
asset, or sending the remaining balance to the vault

contract.

Update: Not fixed. The Origin team states:

We'll keep this as it. We can recover funds if we
need to by re-adding the strategy. By not checking
amounts etc, it gives us a way to remove a strategy
that is broken in some way, and prevents some

other project’'s DOS from being our DOS for long.

[MO04] Trapped Liquidity Rewards

Whenever a liquidity reward campaign is initiated, the
LiquidityReward contract ensures the contract is

preloaded with enough reward tokens to execute the

campaign. However, some of these rewards would not
be distributed if the campaign is stopped. In this
scenario, the excess reward tokens cannot be retrieved
from the contract. It would be possible to start a new
campaign, but then the funds would be distributed to
the existing depositors, which may not be desired (and
likely undermines the reason for stopping the
campaign). Consider introducing a mechanism to
retrieve reward tokens that are not intended for

distribution.

Update: Fixed in PR#688.

[MO5] Excessive Curve 3Pool
withdrawal

When withdrawing funds from the

ThreePoolStrategy , the number of LP tokens to burn
is determined by retrieving the asset value of all LP
tokens, and then scaling down linearly to the desired
withdrawal amount. However, not all LP tokens are
valued equally: as the size of the withdrawal increases,
the value of each LP token should decrease. This

means the withdrawal will retrieve too many tokens.

To account for this, any excess tokens are sent to the
vault. The comments and variables names suggest that
the excess amount would be negligible. However,
since most use cases involve withdrawing a small
fraction of all the assets invested by this strategy, and
the discrepancy increases as the fraction decreases, it
could be significant. It is worth noting that excess
funds that are sent to the vault do not automatically
trigger a reallocation if they exceed the internal

liquidity buffer.

To avoid excess withdrawals, consider using the
calc_token_amount function to determine the number
of LP tokens to burn or the

remove_liquidity imbalance function to withdraw a

specific amount of asset tokens.

Update: Partially fixed in PR#718. Although
remove_Liquidity_imbalance (s now used to avoid
excess withdrawal from Curve’s 3Pool, the strategy
contract still withdraws, at most, the maximum amount
needed from the Gauge. In addition, the strict in
inequality in this require statement makes it impossible

to withdraw the max amount of pTokens .

Low severity

[LO1] Unhandled token transfer
fees

The mint and mintMultiple functions of the
VaultCore contract implicitly assume the token
deposit will transfer the specified number of tokens.
However, the system supports the usDT token, which
includes the possibility of transfer fees. Consider
minting OUSD tokens based on a measurement of the

amount of received tokens.

Update: Not fixed. The Origin team states:

We will be leaving this as is. It is our current belief
that enabling transactions fees on Tether would
destroy it, given that its entire success is based on
being the lowest friction stable medium of

exchange. In the event that Tether enables fees,

we'll adjust at that time.

[LO2] Cannot redeem from both
accounts simultaneously

When redeeming OUSD tokens, the vaultCore
contract will retrieve all the tokens from either its own
buffer or the default strategy. However, if neither the
buffer nor the strategy has sufficient balance
individually, the transfer will fail, even if the combined
balance is large enough and the redemption is valid.

This could occur for large redemptions or unbalanced

stablecoin reserves, and gets worse when the

vaultBuffer is high.

Consider withdrawing from both the buffer and the

strategies when required.

Update: Not fixed. The Origin team states:

We are going to keep this the way it for now. We
would rather have less complexity in the code here.
The buffer in OUSD is a gas optimization to keep
gas usage from being extremely expensive during
non-huge mints and redeems, and only needs to
keep a very small portion of the total vault value in
the buffer. Right now, it's targeting a half a percent
of the assets, and as the asset amount goes up
further, this percentage will be lowered more.
While there remains a reasonable amount of assets
in OUSD, this shouldn’t be a problem. In the case
that almost all assets are being withdrawn, it
should still be possible to get funds out, it just may

take carefully chosen withdrawal amounts.

[LO3] Residual token allowance

There are multiple places in the codebase where

addresses may retain excess token allowances:

the setUniswapAddress function of the BuyBack
contract grants an OUSD allowance to the new
address, but does not revoke the allowance of the

old address, if it exists.

the _abstractSetPToken function and

safeApproveAllTokens functions of all three
strategies grants an allowance to the investment
platform to spend assets on behalf of the strategy,
but the removePToken does not revoke this

allowance.

the _harvest function of the vaultAdmin contract
grants an allowance for Uniswap to spend reward

tokens, but changing the Uniswap address,

changing the reward token, or removing the

strategy does not revoke this allowance.

Consider revoking token allowances when they are no

longer required.

Update: Acknowledged and retained. The Origin team

states:

The strategy and buyback contracts are designed
to be short-lived if necessary. The major change of
switching underlying systems would probably be
accompanied by a clean proxy and a clean slate of

storage.

The vault though is designed to last for the long
term. However the only approvals it currently does
are for the exact amount of the swap being made.

This means that there should be no left over

approvals afterwords that need to be revoked.

[LO4] Rounding down in OUSD
calculations

When transferring tokens, the ousD contract
translates the token amount to the equivalent number
of credits. However, the value is rounded down in both
directions. As a general principle, to minimize the
attack surface, rounding errors should be in favor of
the protocol. Consider using the mulTruncateCeil

function to calculate creditsbeducted .

Similarly, consider using the mulTruncateCeil
function when calculating the number of credits to
burn. This would also remove the need to check for

rounding errors when burning the whole balance.

Update: Not fixed. The Origin team states:

We are going to keep this as is for now. While
rounding in the protocol’s favor is generally good,

any rounding against the users’ transfer, mint, and

burn amounts gets quite painful for users. Users
expect that if they send someone X, the recipient
will get X, and that if they want to keep Y, and they
send their balance minus Y, that they will still have
Y. The amounts involved are trillionths of a trillionth
of a dollar, and OUSD has a flow of yield coming

into it.

[LO5] Not leaving a storage gap
in upgradeable contracts on
multi-level inheritance

The CompoundStrategy , AaveStrategy , and
ThreePoolStrategy contracts inherit from
InitializableAbstractStrategy , and are all meant to

be upgradeable, which means that the governance can

add new functions and/or storage variables to them.

However, if a new storage variable is added to the
InitializableAbstractStrategy contract, it will

overwrite the storage of the children contracts and

therefore will make the storage layout incompatible.

To allow additions of new state variables without
compromising the storage compatibility with existing
deployments, consider leaving a storage gap at the
end of each newely deployed upgradeable contract
that has children contracts. Note that this should only
be performed in newly deployed contracts, and not

between upgrades.

Update: Fixed in PR#713.

[LO6] Rewards can overflow
buffer

When allocating funds, the vaultCore contract first
ensures its internal buffer is full and then determines
the excess amount to invest. After investing this
amount for each asset, it harvests any rewards from its

previous investments and converts them to USDT.

This implies that the reward balances, which can be
arbitrarily large, remain in the vault and exceed the
size of the buffer. This undermines the purpose of the
buffer and is an unexpected behavior. Consider
harvesting the rewards before determining and

allocating the available funds.

Update: Fixed in PR#690. The reward tokens are now

harvested before allocating assets to the strategies.

[LO7] Outdated Solidity version
in use

An outdated Solidity version, ©.5.11, is currently in
use. As Solidity is now under a fast release cycle,
consider using the latest compiler version at the time
of future deployments and upgrades (presently
0.8.7) to incorporate the latest bug fixes. Note that
although Solidity uses semantic versioning, it may
introduce breaking changes between its minor

versions, which should be taken into consideration.

Update: Fixed in PR#738.

[LO8] Simplify redeem outputs
calculation

The calculation to split a value into a fair distribution
of coins is unnecessarily complicated. In particular, the
total balance of all stablecoins is redundant and can be
ignored (or set to 1), which makes the calculation

easier to reason about, as follows:

e the ratio parameter would become the product
of the balance and the price (i.e., the value of the

asset held in the vault).

e the totalOutputRatio parameter could be
renamed to totalvalue, since it represents the

value held by the vault.

e the factor parameter now corresponds to the

fraction of the vault that is being redeemed.

e the outputs parameter has the same value as
before, but now it can be directly interpreted as

the same fraction of each asset balance.

Consider removing the totalBalance parameter from

the calculation.

Update: Acknowledged. The Origin team states:

We'll keep this the way it is. While it is correct that
calculating the total balance of all stablecoins is not
a requirement to calculate the outputs, returning
that number from the function does provide a
considerable gas optimization for the redeem
process. Getting the total balance is very expensive,
since each strategy needs to check each stablecoin
that it supports, and the strategy needs to check
each place that it could have assets, and some of
the strategies assets are not directly denominated
in stables, which require further computation to get
the exchange rate. Since we are doing all this work
anyway in this output calculation function, we do

just extra three adds to sum to a total value here

and return it for use outside this function.

[LO9] Mixing testing and
production code

The codebase contains a few duplicated contracts with
slightly different, security-relevant behaviors.

Specifically:

e The BuybackConstructor contract is equivalent to
the Buyback contract, except it allows the
deployer to arbitrarily set the contract addresses. It
also saves these values as contract variables, which
causes the storage layout to differ between the

contracts.

e The same observation applies to the FlipperDev

and Flipper contracts.

e The oracleRouterDev contractis equivalent to the
OracleRouter contract, except it allows anyone to

arbitrarily set the oracle addresses.

In all cases, we expect the “Constructor” and the “Dev”
contracts are intended for testing purposes only, which
explains their increased flexibility. As a matter of good
practice, consider documenting this in the function
comments and moving them to a test directory to
maintain clearer isolation between the testing and

production code.

Update: Acknowledged. The Origin team states:

The issue has an easy solution with Solidity’s
immutable feature, so that will be implemented

once the Solidity version is upgraded.

[L10] Inconsistent interfaces

The codebase defines an 1Strategy interface thatis
not inherited by any of the strategies. Similarly, the
Ivault interface is not inherited by the vault. This has

introduced some inconsistencies:

e The 1Ivault interface declares DepositsPaused

and DepositsUnpaused events that are never used

e |t also declares a non-existent checkBalance

function with no parameters.

e The reallocate function is declared in the
VaultCore.sol section, butitis defined in

VaultAdmin.sol

Consider inheriting the interfaces whenever they are

implemented and correcting these discrepancies.

Moreover, the IUniswapV2Router interface only
defines the subset of the interface that is needed in
the codebase. Nevertheless, it includes the unused

addLiquidity function. Consider removing it.

Update: Fixed in PR#689.

[L11] Missing validation

There are currently some unvalidated assumptions in

the codebase. For example:

e The vaultCore contract checks if the trustee is
defined before sending it fees, but assumes it is
defined and has a swap function when triggering
the buyback mechanism. If this assumption does

not hold, the contract will be unable allocate funds.

e The ThreePoolStrategy contract makes
assumptions that assetsMapped is of length 3, but
there's nothing in the _initialize function that
enforces that. The deposit and depositAll
functions would revert if the assetsMapped were

ever more than 3 elements long.

e The startCampaign function from the
LiquidityReward contract does not validate that
_numBlocks is not zero. This could emit confusing

events and update values such as startBlock ,
endBlock , and pool.lastRewardBlock without

reason.

Consider adding validation in these and all other
places where assumptions are currently unchecked to
reduce the chance of errors when interacting with and

refactoring the contracts.

Update: Fixed in PR#632, PR#688, and PR#715.

[L12] Function selectors
between VaultCore qnd VaultAdmin
could collide

Instead of inheriting from the VvaultAdmin to access to
its functionality, the vaultcore contract forwards calls
using delegatecall inthe fallback function. This
means that if a function is called that does not exist in
VaultCore , the fallback function will forward this
call to the vaultAdmin contract, using the context of

the former.

The issue is that function selectors between the
VaultCore contract and the vaultAdmin contract are
not being checked for possible collision during
deployment. This means that, if in the future (e.g.,
through a governance upgrade) an external or public
function is defined in the vaultAdmin that has the
same selector as one of the functions in the
VaultCore contract, the vaultAdmin function will be

impossible to call.

Consider checking that there are no collisions between
the functions defined in the vaultCore and the

VaultAdmin contracts within the deployment scripts.

Update: Acknowledged. The Origin team states:

| We are planning on writing a script to check this.

[L13] Lack of event emission
after sensitive actions

The following functions do not emit relevant events

after executing sensitive actions.

e The setRewardTokenAddress function of the
InitializableAbstractStrategy contract should
emit a RewardTokenAddressUpdated event when

updating the rewardTokenAddress variable.

¢ The setRewardLiquidationThreshold function of
the InitializableAbstractStrategy should emit a

RewardLiquidationThresholdUpdated event

e The withdrawAll function in the
CompoundStrategy contract should emit the
Withdrawal (or a new WithdrawAll) event as the

withdraw function does.

e The _allocate function from the vaultCore

contract should emit an AssetsAllocated event.

Consider emitting events after sensitive changes take
place, to facilitate tracking and notify off-chain clients

following the contracts’ activity.

Update: Partially fixed in PR#677. The withdrawAll

function still does not emit events.

[L14] Incomplete event
emissions

When defining events with the sole purpose of
showing a storage modification, it is a good practice to
emit both the old value and the new value of the

modified variable. Some examples are:

e The UniswapUpdated eventin the Buyback and
BuybackConstructor contract should emit both the

old and the new uniswap addresses.

e The PriceProviderUpdated , RedeemFeeUpdated ,
VaultBufferUpdated , AllocateThresholdUpdated ,
RebaseThresholdUpdated , UniswapUpdated events
(among others) in the vaultAdmin contract should

emit the old and new value that is being updated.

Additionally, the withdrawal event in the
ThreePoolStrategy contract should also emit the

beneficiary address (i.e., who receives the assets).

Consider reviewing all the events that are being
emitted throughout the codebase and checking that
all sensitive variables are being emitted, to avoid
hindering the task of off-chain services interested in

these events.

[L15] Missing error messages in
require Stqtements

Some require statements are missing error

messages, such as the following:

e the transfer callsinthe Flipper contracts

e the require statements within the upgradeGlobals
and upgradeAccounts functions of the

OUSDResolutionUpgrade contract

To improve the code’s readability and to help
debugging issues that may arise, consider including
specific and informative error messages in all require

statements.

Update: Fixed in PR#662.

[L16] Lack of indexed
parameters in events

Throughout the code, there are parameters in events

that are not indexed. Some examples are:

e Inthe vaultStorage contract:
AssetDefaultStrategyUpdated , Mint , Redeem,
YieldDistribution , TrusteeAddressChanged ,
StrategistUpdated , UniswapUpdated ,

PriceProviderUpdated .

e The asset parameterin the Skippedwithdrawal

event.

e The recipient parameter in the

RewardTokenCollected event.

Consider indexing event parameters to avoid
hindering the task of off-chain services searching and

filtering for specific events.

Update: Acknowledged and retained. The Origin team

states:

| Keeping as is to maintain backwards compatibility.

[L17] Not USing safeTransfer

The Flipper contract allows users to exchange OUSD
1:1 for any of DAI, USDC, or USDT and vice versa as a
low cost way to perform swaps. Although the
withdraw functions use safeTransfer , none of the
other transfer functions in the Flipper contracts use

safeTransfer .

Consider always using safeTransfer as a best

practice.

Update: Acknowledged. The Origin team states:

The flipper contract uses hard-coded token
addresses, and does not support adding tokens
without deploying a new contract. For the swaps,
each token has the correct interface for it, with
USDT in particular using their own returnless
transfers. We do use safeTransfer on methods
that can operate on arbitrary tokens. We're going
to keep this as is, since the focus on this contract is

extremely low gas usage for small swaps.

[L18] Implicit casting

Implicit casting is used to convert the price from
int256 to uint256 . This could overflow if the price
were negative, but the require statements should
revert the function in such case, as the result would be

outside this range.

Although this cannot result in overflow because of the
require statements, consider using SafeCast to safely
convert between different integer types as a best

practice.

Update: Acknowledged and retained by the Origin

team.

[L19] Unnecessary empty
constructors defined

The Flipper contract defines empty constructors with
no parameters, which is not necessary and only
hinders code readability. According to the Solidity
docs on constructors: “If there is no constructor, the
contract will assume the default constructor, which is

equivalent to constructor() public {} "

To favor simplicity, consider removing all empty

constructors from the codebase.

Update: Fixed in PR#646.

Notes & Additional
Information

[NO1] Buyback could be rebasing

The Buyback contract can receive OUSD tokens
whenever the token contract rebases and it disposes
of them whenever funds are allocated in the vault and
it has at least $1000. Therefore, it's possible for the
contract to hold OUSD tokens during a rebase.
Moreover, it does not perform any internal accounting
to track its own OUSD balance, which makes it safe for
rebasing. To maximize the effectiveness of the Buyback
program, consider allowing the contract to opt-in to

rebases.

Update: Acknowledged and retained. The Origin team

states:

We'll keep as is. By not being rebasing, this
provides extra yield to user of OUSD.

[NO2] Misleading comments

Throughout the code, we found several comments
either misleading or inconsistent with the function

implementation. Some examples are:

e The withdrawaAll functions of the Flipper
contracts claim to be equivalent to “pausing” the
contract, but this is not true as anyone can still
subsequently deposit into the contract to enable

all functionality.

e The deposit, _deposit and withdraw functions
of the AaveStategy contract provide a NatSpec
comment for the return value, but the function

does not return anything.

e The changeSupply function of the ousb contract

provides a NatSpec comment for the return value,

but the function does not return anything.

e The onlyvault modifier mentions a non-existent

Savings Manager contract

e The transferTokens function on the Buyback

contract is missing its @param statements.

e The feed function on the oOracleRouter contract

is missing its @return statement.

Consider either revising or removing misleading
comments to more accurately reflect function

implementations.

Update: Partially fixed in commit
b80180bb5c606ea472661186d5d232de95f72e48 , where
the misleading @return NatSpec comments were

removed.

[NO3] Withdraw funds to
recipient

The Buyback contract and Flipper contract each
contain mechanisms for the governor to withdraw
funds to its own address. However, this mixes roles
and requires additional complexity to handle the
received tokens. Consider specifying a recipient
address, so the governance structure can allocate the

funds without having to first take possession of them.

Update: Not fixed. The Origin team state:

We are going to keep these as is. It makes it easier
for humans to validate the admin transactions, and
it's one less place to fat finger a number. It would
save on gas, but these admin transfers are very
rare. When we do need to make them, our
governor timelock can queue and atomically run
multiple actions, so it's easy enough to withdraw in

one action and transfer after, all in the same

transaction.

[NO4] Unnecessary external
calls

In the depositAll function of the ThreePoolStrategy
contract, the get_virtual price function is called
against Curve's 3Pool contract for each iteration of a

for loop.

Consider instead just calling get_virtual_price once

before the loop to improve efficiency.

Update: Fixed in PR#639.

[NO5] Unnecessary writes to
strategies mapping

The removeStrategy function removes a strategy from
the vault, withdrawing all invested assets and returning
them to the vault. It updates the strategyIndex
depending on whether the _addr parameter exists in
allStrategies . Then, if the strategyIndex exists in
allstrategies , the function pops the value from the
allstrategies array, and withdraws all assets from
the strategy. Afterwards, the function updates the
struct in the strategies mapping for _addr to set
isSupported to false, regardless of whether the

_addr key exists in strategies .

Consider moving the strategies mapping update
into the conditional block that checks whether the
_addr exists in allStrategies to avoid unnecessary

writes to storage.

Update: Fixed in PR#705.

[NO6] Unconventional storage
slots

The Governable contract uses a similar pattern to EIP-
1967 to produce pseudo-random storage slot
locations. As noted in the EIP, it is conventional to
introduce a fixed offset to ensure there is no known

hash pre-image. Nevertheless, the current locations

are chosen securely and we do not recommend
changing storage locations on live contracts, so we are

noting this for informational purposes.

Update: Acknowledged. In the words of the Origin

team:

We are acknowledging the comment on this, and
concur with you that we should continue to use the

current values.

[NO7] Incorrect function visibility

The allocate, rebase, and redeem functions are not
called internally by the vaultCore contract. Consider

setting the visibility to external instead of public .

Update: Fixed in PR#641.

[NO8] Lack of explicit visibility in
state variables

Throughout the codebase there are state variables and
constants that are implicitly using the default visibility.

Some examples are:

e Inthe vaultStorage contract: assets,

allAssets , strategies, allStrategies, OUSD .

e Inthe ThreePoolStrategy contract:
crvGaugeAddress , crvMinterAddress ,

maxSlippage .

To favor readability, consider explicitly declaring the

visibility of all state variables and constants.

Update: Partially fixed in PR#642.

[NO9] Unnecessary modifier
defined in function

The rebase function from the vaultCore contract

uses the whenNotRebasePaused modifier and calls the

_rebase internal function, which also uses this

modifier.

In the interest of simplicity and avoiding redundant
validations, consider removing the modifier from the

rebase function.

Update: Fixed in PR#643.

[N10] Using now instead of

block.timestamp

The global variable now is used in a few places within
the codebase, such as in the Buyback contract and in
the vaultAdmin contract. This value could be
misinterpreted and has since been deprecated in
Solidity v0.7.0.

Consider instead using block.timestamp to reflect
that the value is a property of the block and to future-

proof the codebase for newer versions of Solidity.

Update: Fixed in PR#714.

[N11] Using require to revert

The oOracleRouter contractuses a require statement
that always fails. To better signal the code’s intention,

consider using a revert statement instead.

Update: Fixed in PR#644.

[N12] Unused variable

The calculateRedeemOutputs function defines a

totalvalue variable, but never uses it.
Consider removing unused variables.

Update: Fixed in PR#638.

[N13] Inconsistent coding style

The codebase does not follow a consistent style and it

deviates from the recommended Solidity Style Guide.

Some examples include:

e constants not using UPPER_CASE format
e contract should be preceded by 2 blank lines

e the order of functions does not always follow the
recommended order of: constructor, fallback,

external, public, internal, private

Taking into consideration how much value a consistent
coding style adds to the project’s readability, enforcing
a standard coding style with help of linter tools such as

Solhint is recommended.

Update: Acknowledged and retained by the Origin

team.

[N14] Typographical errors

We have identified the following typographical errors

in the codebase:

e “ICERC20" should be “I[ERC20"

e "approval approval” should be "approval”
e “liquidiity” should be “liquidity”

e “ot” should be "of"

e "jGeneric” should be “Generic”

e "a"should be "an”

e "9e38" should be "9e36"

e "Addresss” should be “Address”

e “form” should be “from”

e "the the” should be "to the”

e “optionaly” should be “optionally”

e “suppported” should be “supported”

e “_amount” should be “amount” in several

comments in the ousb contract

e "to" should be “"from”

Consider correcting typographical errors in the

codebase and using an IDE add-on to identify errors in

the future.

Update: Fixed in commit 192e0172.

Conclusions

1 critical and 5 high severity issues were found. Some
changes were proposed to follow best practices and

reduce the potential attack surface.
RELATED POSTS

| »
Smart Contract | notional

Security Registry

Notional Protocol
V2 Governance Contracts

- " .
- 7 OpenZeppelin | contracts L OpenZeppetm | Secunty

ANNOUNCEMENTS SECURITY AUDITS
Introducing the Smart Notional Governance
Contract Security Contracts v2 Audit
RGgIStI"y The Notional Finance team asked us to
We are proud to announce the open review and audit the governance smart
source Smart Contract Security Registry. contracts of their v2...

Effective security not... READ MORE

READ MORE

Workshop #4
09/16 - 12PM PST / IPM UTC

Strategies for Secure
Governance with
Smart Contracts

R

Martin Abbatemarco

EVENTS GUIDELINES

Smart Contract Security
Guidelines #4: Strategies
for Safer Governance
systems

This guide focuses on showcasing battle-
tested practices and recommended

patterns to implement...

READ MORE

Contracts Security Audits

* Defender

Get our monthly news roundup

© OpenZeppelin 2017-2021 | Privacy
| Terms of Service

Docs
Forum

Ethernaut

Website
About
Jobs

Logo Kit

