
Confidential

SMART CONTRACT AUDIT REPORT

for

BZEROX, LLC

Prepared By: Shuxiao Wang

Hangzhou, China
Sep. 1, 2020

1/43 PeckShield Audit Report #: 2020-21

sxwang@peckshield.com

Confidential

Document Properties

Client bZeroX, LLC
Title Smart Contract Audit Report
Target bZx v2.0
Version 1.0-rc1
Author Chiachih Wu
Auditors Xuxian Jiang, Chiachih Wu, Huaguo Shi, Jeff Liu
Reviewed by Jeff Liu
Approved by Xuxian Jiang
Classification Confidential

Version Info

Version Date Author(s) Description
1.0-rc1 Sep. 1, 2020 Chiachih Wu Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/43 PeckShield Audit Report #: 2020-21

Confidential

Contents

1 Introduction 5
1.1 About bZx v2.0 . 5
1.2 About PeckShield . 6
1.3 Methodology . 6
1.4 Disclaimer . 8

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Business Logic Error in _burnToken() . 12
3.2 Denial-of-Service Risk in borrow() . 13
3.3 Business Logic Error in marginTrade() . 15
3.4 Incompatible _dsrWithdraw() Return Value . 17
3.5 Incessive _dsrDeposit() Call in _mintToken() . 18
3.6 Zero Amount Flash Loan . 19
3.7 Confused Deputy in borrow()/marginTrade() . 20
3.8 Business Logic Error in getLoanParamsList() . 21
3.9 Inconsistent Fee Calculation in getBorrowAmount() and getRequiredCollateral() . . . 22
3.10 Reentrancy Risk in withdrawAccruedInterest() . 24
3.11 Unused Variables in _initializeLoan()/_closeLoan() 26
3.12 Inconsistent Book-Keeping Records/Events Data in _payFeeReward() 27
3.13 Incompatibility With Deflationary Tokens in swapExternal() 29
3.14 Improved Arithmetic Operations . 30
3.15 Business Error in _updateCheckpoints . 32
3.16 Business Logic Error in queryReturn() . 34
3.17 Other Suggestions . 35

4 Conclusion 36

3/43 PeckShield Audit Report #: 2020-21

Confidential

5 Appendix 37
5.1 Basic Coding Bugs . 37

5.1.1 Constructor Mismatch . 37
5.1.2 Ownership Takeover . 37
5.1.3 Redundant Fallback Function . 37
5.1.4 Overflows & Underflows . 37
5.1.5 Reentrancy . 38
5.1.6 Money-Giving Bug . 38
5.1.7 Blackhole . 38
5.1.8 Unauthorized Self-Destruct . 38
5.1.9 Revert DoS . 38
5.1.10 Unchecked External Call . 39
5.1.11 Gasless Send . 39
5.1.12 Send Instead Of Transfer . 39
5.1.13 Costly Loop . 39
5.1.14 (Unsafe) Use Of Untrusted Libraries . 39
5.1.15 (Unsafe) Use Of Predictable Variables . 40
5.1.16 Transaction Ordering Dependence . 40
5.1.17 Deprecated Uses . 40

5.2 Semantic Consistency Checks . 40
5.3 Additional Recommendations . 40

5.3.1 Avoid Use of Variadic Byte Array . 40
5.3.2 Make Visibility Level Explicit . 41
5.3.3 Make Type Inference Explicit . 41
5.3.4 Adhere To Function Declaration Strictly . 41

References 42

4/43 PeckShield Audit Report #: 2020-21

Confidential

1 | Introduction

Given the opportunity to review the source code of bZx v2.0 smart contract, we in the report outline
our systematic approach to evaluate potential security issues in the smart contract implementation,
expose possible semantic inconsistencies between smart contract code and design document, and
provide additional suggestions or recommendations for improvement. Our results show that the
given version of smart contract can be further improved due to the presence of several issues. This
document outlines our audit results.

1.1 About bZx v2.0

The bZx protocol is a set of smart contracts running on top of the Ethereum blockchain. The protocol
focuses on lending and margin trading similar to the dYdX protocol. There are three main tokens
in the bZx system, iTokens, pTokens, and BZRX tokens. The bZx system of lending and borrowing
depends on iTokens and pTokens, and when users lend or borrow money on bZx, their crypto assets
go into or come out of global liquidity pools, which are pools of funds shared between many different
exchanges. When lenders supply funds into the global liquidity pools, they automatically receive
iTokens; When users borrow money to open margin trading positions, they automatically receive
pTokens. The system is also designed to use the BZRX tokens, which are only used to pay fees on
the network currently.

The basic information of bZx v2.0 is as follows:

Table 1.1: Basic Information of bZx v2.0

Item Description
Issuer bZeroX, LLC

Website https://bzx.network/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report Sep. 1, 2020

5/43 PeckShield Audit Report #: 2020-21

Confidential

In the following, we show the Git repository of reviewed code and the commit hash value used in
this audit:

• https://github.com/bZxNetwork/contractsV2 (e0c7ec0)

1.2 About PeckShield

PeckShield Inc. [15] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [10]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

6/43 PeckShield Audit Report #: 2020-21

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Confidential

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/43 PeckShield Audit Report #: 2020-21

Confidential

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [9], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this audit does not give any warranties on finding all possible security issues of the given
smart contract(s), i.e., the evaluation result does not guarantee the nonexistence of any further
findings of security issues. As one audit-based assessment cannot be considered comprehensive, we
always recommend proceeding with several independent audits and a public bug bounty program to
ensure the security of smart contract(s). Last but not least, this security audit should not be used
as investment advice.

8/43 PeckShield Audit Report #: 2020-21

Confidential

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

9/43 PeckShield Audit Report #: 2020-21

Confidential

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the bZx v2.0 implementation. During the first
phase of our audit, we studied the smart contract source code and ran our in-house static code
analyzer through the codebase. The purpose here is to statically identify known coding bugs, and
then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 1

High 2

Medium 2

Low 4

Informational 7

Total 16

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/43 PeckShield Audit Report #: 2020-21

Confidential

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 critical-severity vulner-
ability, 2 high-severity vulnerabilities, 2 medium-severity vulnerabilities, 4 low-severity vulnerabilities,
and 7 informational recommendations.

Table 2.1: Key bZx v2.0 Audit Findings

ID Severity Title Category Status
PVE-001 High Business Logic Error in _burnToken() Business Logics Fixed
PVE-002 Low Denial-of-Service Risk in borrow() Business Logics Fixed
PVE-003 High Business Logic Error in marginTrade() Business Logics Fixed
PVE-004 Info. Incompatible _dsrWithdraw() Return Value Coding Practices Fixed
PVE-005 Info. Incessive _dsrDeposit() Call in _mintToken() Coding Practices Fixed
PVE-006 Info. Zero Amount Flash Loan Business Logics Fixed
PVE-007 Critical Confused Deputy in borrow()/marginTrade() Business Logics Fixed
PVE-008 Medium Business Logic Error in getLoanParamsList() Business Logics Fixed
PVE-009 Medium Inconsistent Fee Calculation in getBorrowAmount()

and getRequiredCollateral()
Business Logics Fixed

PVE-010 Info. Reentrancy Risk in withdrawAccruedInterest() Security Features Fixed
PVE-011 Info. Unused Variables in _initializeLoan()/_closeLoan() Coding Practices Confirmed
PVE-012 Low Inconsistent Book-Keeping Records/Events Data in

_payFeeReward()
Business Logics Fixed

PVE-013 Low Incompatibility With Deflationary Tokens in
swapExternal()

Business Logics Fixed

PVE-014 Info. Improved Arithmetic Operations Business Logics Fixed
PVE-015 Info. Business Error in _updateCheckpoints Business Logics Fixed
PVE-016 Low Business Logic Error in queryReturn() Business Logics Fixed

Please refer to Section 3 for details.

11/43 PeckShield Audit Report #: 2020-21

Confidential

3 | Detailed Results

3.1 Business Logic Error in _burnToken()

• ID: PVE-001

• Severity: High

• Likelihood: High

• Impact: Medium

• Target: LoanTokenLogicDai

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

In bZx v2.0, loan token holders could burn tokens to get their underlying assets back. In particular,
the LoanToken minted by depositing Dai or Chai tokens could be cashed out by invoking the exter-
nal function burn() or burnToChai(). When reviewing the implementation of the LoanTokenLogicDai

contract, we notice that the burnToChai() function has a business logic error which could lead to
transferring the underlying Chai tokens to a wrong address.

As shown in the following code snippets, the external function burnToChai() allows the caller
(msg.sender) to burn burnAmount of loan tokens and get the underlying Chai tokens to the receiver.

58 f unc t i on burnToChai (
59 address r e c e i v e r ,
60 uint256 burnAmount)
61 ex te rna l
62 nonReent rant
63 r e tu rn s (uint256 chaiAmountPaid)
64 {
65 re tu rn _burnToken (
66 burnAmount ,
67 r e c e i v e r ,
68 t rue // toChai
69) ;
70 }

Listing 3.1: LoanTokenLogicDai.sol

12/43 PeckShield Audit Report #: 2020-21

Confidential

The internal function _burnToken() calculates the amount of Chai to be withdrawn. However, the
Chai tokens are move()’ed to the msg.sender instead of the receiver (line 337). Compared to the case
of withdrawing Dai tokens (toChai = false), the Dai tokens are withdrawn from DSR to receiver,
which is inconsistent to the toChai = true case.

329 i f (toCha i) {
330 _dsrDepos i t () ;

332 I Cha i _chai = _getChai () ;
333 uint256 cha iBa l an c e = _chai . ba lanceOf (address (t h i s)) ;

335 s u c c e s s = _chai . move (
336 address (t h i s) ,
337 msg . sender ,
338 amountPaid
339) ;

341 // get Chai amount withdrawn
342 amountPaid = cha iBa l an c e
343 . sub (_chai . ba lanceOf (address (t h i s))) ;
344 } e l s e {
345 s u c c e s s = _dsrWithdraw (amountPaid) . t r a n s f e r (
346 r e c e i v e r ,
347 amountPaid
348) ;

350 _dsrDepos i t () ;
351 }

Listing 3.2: LoanTokenLogicDai.sol

Recommendation Fix the toChai case by move()’ing Chai from address(this) to receiver.

Status This issue has been addressed by fixing the Chai receiver in this commit: 24510aa.

3.2 Denial-of-Service Risk in borrow()

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: LoanTokenLogicStandard

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

In bZx v2.0, the borrowOrTradeFromPool() function in the bZx contract is the core of opening a new
loan. As shown in the following code snippets, the msg.value should be zero when the loanDataBytes is

13/43 PeckShield Audit Report #: 2020-21

https://github.com/bZxNetwork/contractsV2/commit/24510aa14f1aaa218050ce222679b64198d15fcf

Confidential

empty (line 62). However, we found a path from the loan token contract to the borrowOrTradeFromPool

() with an empty loanDataBytes but a non-zero msg.value, which leads to a denial-of-service vulner-
ability.

40 f unc t i on borrowOrTradeFromPool (
41 bytes32 l oanParamsId ,
42 bytes32 l o an I d , // if 0, start a new loan
43 bool i sTorqueLoan ,
44 uint256 i n i t i a l M a r g i n ,
45 address [4] c a l l d a t a s en tAdd r e s s e s ,
46 // lender: must match loan if loanId provided
47 // borrower: must match loan if loanId provided
48 // receiver: receiver of funds (address (0) assumes borrower address)
49 // manager: delegated manager of loan unless address (0)
50 uint256 [5] c a l l d a t a s en tVa lue s ,
51 // newRate: new loan interest rate
52 // newPrincipal: new loan size (borrowAmount + any borrowed interest)
53 // torqueInterest: new amount of interest to escrow for Torque loan (

determines initial loan length)
54 // loanTokenReceived: total loanToken deposit (amount not sent to borrower

in the case of Torque loans)
55 // collateralTokenReceived: total collateralToken deposit
56 bytes c a l l d a t a loanDataBytes)
57 ex te rna l
58 payable
59 nonReent rant
60 r e tu rn s (uint256 newPr i n c i p a l , uint256 n ewCo l l a t e r a l)
61 {
62 r equ i r e (msg . va lue == 0 || l oanDataBytes . l ength != 0 , "loanDataBytes required with

ether") ;

Listing 3.3: LoanOpenings.sol ::borrowOrTradeFromPool()

The path starts from the borrow() function in the loan token contract. In line 177-184, _borrowOrTrade
() is invoked with an empty loanDataBytes.

177 re tu rn _borrowOrTrade (
178 l o an I d ,
179 withdrawAmount ,
180 2 ∗ 10∗∗18 , // leverageAmount (translates to 150% margin for a Torque loan)
181 c o l l a t e r a lTok enAdd r e s s ,
182 s en tAdd r e s s e s ,
183 sentAmounts ,
184 "" // loanDataBytes
185) ;

Listing 3.4: LoanTokenLogicStandard.sol::borrow()

Inside _borrowOrTrade(), msgValue is set as the ether balance of the loan token contract when
msg.value is not zero.

843 uint256 msgValue ;
844 i f (msg . va lue != 0) {

14/43 PeckShield Audit Report #: 2020-21

Confidential

845 msgValue = address (t h i s) . balance ;
846 i f (msgValue > msg . va lue) {
847 msgValue = msg . va lue ;
848 }
849 }

Listing 3.5: LoanTokenLogicStandard.sol::_borrowOrTrade()

Later on, the msgValue is passed into the bZx contract with the empty loanDataBytes.

861 (sentAmounts [1] , sentAmounts [4]) = P r o t o c o l L i k e (bZxContract) .
borrowOrTradeFromPool . va lue (msgValue) (// newPrincipal , newCollateral

862 l oanParamsId ,
863 l o an I d ,
864 withdrawAmount != 0 ? // isTorqueLoan
865 t rue :
866 f a l s e ,
867 l everageAmount , // initialMargin
868 s en tAdd r e s s e s ,
869 sentAmounts ,
870 l oanDataBytes
871) ;

Listing 3.6: LoanTokenLogicStandard.sol::_borrowOrTrade()

This means the borrow() transaction would be always reverted if the loan token contract has
some ether balance. Unfortunately, there’s a public payable function, flashBorrow(), which allows an
arbitrary user to intentionally leave some ether in the loan token contract. Those intentionally left
ether would fail all the following borrow() calls.

Recommendation Fix the msgValue sent into the bZx contract.

Status This issue has been addressed by getting the msgValue from the _verifyTransfers()

function which accurately compute the ether carried with the borrow() call in this commit: 24510aa.

3.3 Business Logic Error in marginTrade()

• ID: PVE-003

• Severity: High

• Likelihood: High

• Impact: Medium

• Target: LoanTokenLogicStandard

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

While tracing the code flow of marginTrade(), we notice that the implementation is incomplete when
the execution reaches _swapsCall() with a non-empty loanDataBytes. As shown in the following code

15/43 PeckShield Audit Report #: 2020-21

https://github.com/bZxNetwork/contractsV2/commit/24510aa14f1aaa218050ce222679b64198d15fcf

Confidential

snippets, the else branch starting from line 133 leaves the system in an invalid state.

127 i f (l oanDataBytes . l ength == 0) {
128 (destTokenAmountReceived , sourceTokenAmountUsed) = _swapsCa l l_ in t e rna l (
129 addrs ,
130 v a l s
131) ;
132 } e l s e {
133 /*
134 // keccak256 (" Swaps_SwapsImplZeroX ")
135 address swapsImplZeroX;
136 assembly {
137 swapsImplZeroX := sload (0

x129a6cb350d136ca8d0881f83a9141afd5dc8b3c99057f06df01ab75943df952)
138 }
139 */
140 // revert(string(loanDataBytes));
141 /*
142 vaultWithdraw(
143 addrs[0], // sourceToken
144 address(zeroXConnector),
145 sourceTokenAmount
146);
147 (destTokenAmountReceived , sourceTokenAmountUsed) = zeroXConnector.swap.value

(msg.value)(
148 addrs[0], // sourceToken
149 addrs[1], // destToken
150 addrs[2], // receiver
151 sourceTokenAmount ,
152 0,
153 loanDataBytes
154);
155 */
156 }

Listing 3.7: SwapsUser.sol :: _swapsCall()

Unfortunately, an user can set an arbitrary loanDataBytes in marginTrade() which leads the invalid
state mentioned above.

238 re tu rn _borrowOrTrade (
239 l o an I d ,
240 0 , // withdrawAmount
241 l everageAmount ,
242 c o l l a t e r a lTok enAdd r e s s ,
243 s en tAdd r e s s e s ,
244 sentAmounts ,
245 l oanDataBytes
246) ;

Listing 3.8: LoanTokenLogicStandard.sol::marginTrade()

Recommendation Implement the loanDataBytes.length != 0 case in _swapsCall().

16/43 PeckShield Audit Report #: 2020-21

Confidential

Status This issue has been addressed by reverting the loanDataBytes.length != 0 case in
_swapsCall() in this commit: 24510aa.

3.4 Incompatible _dsrWithdraw() Return Value

• ID: PVE-004

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: LoanTokenLogicDai

• Category: Coding Practices [7]

• CWE subcategory: CWE-1041 [3]

Description

The internal function, _dsrWithdraw(), in the LoanTokenLogicDai contract allows the caller to withdraw
_value of Dai from the DSR for later usage. The _dsrWithdraw() function also returns the Dai address
which seems a performance improvement as the Dai address is kept in the _dai local variable.

417 f unc t i on _dsrWithdraw (
418 uint256 _value)
419 i n t e r n a l
420 r e tu rn s (IERC20 _dai)
421 {
422 _dai = _getDai () ;
423 uint256 l o c a l B a l a n c e = _dai . ba lanceOf (address (t h i s)) ;
424 i f (_value > l o c a l B a l a n c e) {
425 _getChai () . draw (
426 address (t h i s) ,
427 _value − l o c a l B a l a n c e
428) ;
429 }
430 }

Listing 3.9: LoanTokenLogicDai.sol

With the existence of _getDai(), _getChai(), and _getPot(), the routine _dsrWithdraw() should
not have an inconsistent implementation which includes the feature of _getDai().

Recommendation Use _getDai() instead of _dsrWithdraw() to get the Dai address.

Status This issue has been addressed by re-factoring the _dsrWithdraw() function in this commit:
24510aa.

17/43 PeckShield Audit Report #: 2020-21

https://github.com/bZxNetwork/contractsV2/commit/24510aa14f1aaa218050ce222679b64198d15fcf
https://github.com/bZxNetwork/contractsV2/commit/24510aa14f1aaa218050ce222679b64198d15fcf

Confidential

3.5 Incessive _dsrDeposit() Call in _mintToken()

• ID: PVE-005

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: LoanTokenLogicDai

• Category: Coding Practices [7]

• CWE subcategory: CWE-1041 [3]

Description

In the LoanTokenLogicDai contract, the _mintToken() internal function implements the underlying
functions of mintWithChai() and mint(). When the msg.sender sends in Chai or Dai tokens, the
corresponding loan tokens would be minted.

255 f unc t i on _mintToken (
256 address r e c e i v e r ,
257 uint256 depositAmount ,
258 bool wi thCha i)
259 i n t e r n a l
260 r e tu rn s (uint256 mintAmount)
261 {
262 r equ i r e (depos i tAmount != 0 , "17") ;

264 _ s e t t l e I n t e r e s t () ;

266 uint256 c u r r e n t P r i c e = _tokenPr ice (_to ta lA s s e tSupp l y (0)) ;
267 uint256 c u r r e n tCh a i P r i c e ;
268 IERC20 i nA s s e t ;

270 i f (w i thCha i) {
271 i nA s s e t = IERC20 (address (_getChai ())) ;
272 c u r r e n tCh a i P r i c e = c h a i P r i c e () ;
273 } e l s e {
274 i nA s s e t = IERC20 (address (_getDai ())) ;
275 }

277 r equ i r e (i nA s s e t . t r a n s f e rF r om (
278 msg . sender ,
279 address (t h i s) ,
280 depos i tAmount
281) , "18") ;

283 _dsrDepos i t () ;

Listing 3.10: LoanTokenLogicDai.sol

As an optimization strategy, _dsrDeposit() is invoked in line 283 to save incoming Dai tokens into
DSR for additional earnings. However, in the case withChai == true, there’s no Dai balance increased
such that the _dsrDeposit() call is not necessary.

18/43 PeckShield Audit Report #: 2020-21

Confidential

Recommendation Call _dsrDeposit() only in the withChai == false case.

Status This issue has been addressed by calling _dsrDeposit() only in the withChai == false

case in this commit: 24510aa.

3.6 Zero Amount Flash Loan

• ID: PVE-006

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: LoanTokenLogicDai

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

In bZx v2.0, the flashBorrowToken() function allows users to borrow some tokens, call arbitrary
contracts, and return those tokens back in one transaction. While reviewing the source code, we
noticed that zero amount flash loans are supported (i.e., borrowAmount == 0). This implementation is
like a free proxy contract with no visible benefit.

86 f unc t i on f l a shBor rowToken (
87 uint256 borrowAmount ,
88 address borrower ,
89 address t a r g e t ,
90 s t r i n g c a l l d a t a s i g n a t u r e ,
91 bytes c a l l d a t a data)
92 ex te rna l
93 payable
94 nonReent rant
95 r e tu rn s (bytes memory)
96 {
97 _checkPause () ;

99 _ s e t t l e I n t e r e s t () ;

101 IERC20 _dai ;
102 i f (borrowAmount != 0) {
103 _dai = _dsrWithdraw (borrowAmount) ;
104 } e l s e {
105 _dai = _getDai () ;
106 }

Listing 3.11: LoanTokenLogicDai.sol

Recommendation Ensure borrowAmount is greater than zero.

Status This issue has been addressed by requiring borrowAmount != 0 in this commit: 24510aa.

19/43 PeckShield Audit Report #: 2020-21

https://github.com/bZxNetwork/contractsV2/commit/24510aa14f1aaa218050ce222679b64198d15fcf
https://github.com/bZxNetwork/contractsV2/commit/24510aa14f1aaa218050ce222679b64198d15fcf

Confidential

3.7 Confused Deputy in borrow()/marginTrade()

• ID: PVE-007

• Severity: Critical

• Likelihood: High

• Impact: High

• Target: LoanTokenLogicStandard

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

While reviewing the the code flow of borrow()’ing from an existing loan indexed by a loanId, we
noticed that the public function, i.e., LoanTokenLogicStandard::borrow(), fails to validate the borrower

. This leads to a critical confused deputy issue which allows an arbitrary user to impersonate a
borrower for borrowing digital assets to a given receiver.

As shown in the following code snippets, there’s no sanity checks against the msg.sender and the
borrower when loanId is not 0. A bad actor could simply invoke borrow() with a victim address as the
borrower and a loanId which was created by that victim address for stealing assets from an existing
victim’s loan.

86 f unc t i on borrow (
87 bytes32 l o an I d , // 0 if new loan
88 uint256 withdrawAmount ,
89 uint256 i n i t i a l L o a nDu r a t i o n , // duration in seconds
90 uint256 c o l l a t e r a lTok e nS en t , // if 0, loanId must be provided; any ETH sent

must equal this value
91 address c o l l a t e r a lTok enAdd r e s s , // if address (0), this means ETH and ETH must

be sent with the call or loanId must be provided
92 address borrower ,
93 address r e c e i v e r ,
94 bytes memory /* loanDataBytes */) // arbitrary order data (for future use)
95 pub l i c
96 payable
97 usesGasToken
98 r e tu rn s (uint256 , uint256) // returns new principal and new collateral added to

loan
99 {

100 r equ i r e (withdrawAmount != 0 , "6") ;

102 _checkPause () ;

104 r equ i r e (msg . va lue == 0 | | msg . va lue == co l l a t e r a lTok e nS en t , "7") ;
105 r equ i r e (c o l l a t e r a l T o k e nS e n t != 0 || l o a n I d != 0 , "8") ;
106 r equ i r e (c o l l a t e r a l T o k e nAdd r e s s != address (0) | | msg . va lue != 0 | | l o a n I d != 0 ,

"9") ;

Listing 3.12: LoanTokenLogicStandard.sol

20/43 PeckShield Audit Report #: 2020-21

Confidential

The marginTrade() function has a similar issue such that the bad actor could impersonate the
trader for trading with an existing loan.

190 f unc t i on marginTrade (
191 bytes32 l o an I d , // 0 if new loan
192 uint256 l everageAmount ,
193 uint256 loanTokenSent ,
194 uint256 c o l l a t e r a lTok e nS en t ,
195 address c o l l a t e r a lTok enAdd r e s s ,
196 address t r ad e r ,
197 bytes memory l oanDataBytes) // arbitrary order data
198 pub l i c
199 payable
200 usesGasToken
201 r e tu rn s (uint256 , uint256) // returns new principal and new collateral added to

trade
202 {
203 _checkPause () ;

205 i f (c o l l a t e r a l T o k e nAdd r e s s == address (0)) {
206 c o l l a t e r a l T o k e nAdd r e s s = wethToken ;
207 }
208 r equ i r e (c o l l a t e r a l T o k e nAdd r e s s != loanTokenAddress , "11") ;

Listing 3.13: LoanTokenLogicStandard.sol

Recommendation Validate the msg.sender in the beginning of borrow() and marginTrade().

Status This issue has been addressed by validating the msg.sender in the beginning of borrow()
and marginTrade() when loanId != 0 in this commit: 890d476.

3.8 Business Logic Error in getLoanParamsList()

• ID: PVE-008

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: LoanTokenLogicStandard

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

In the LoanSettings contract, the getLoanParamsList() function allows the caller to retrieve the
count entries from userLoanParamSets starting at index start. If there is no enough entries in
userLoanParamSets, less than count entries would be returned. To achieve that, the getLoanParamsList

() function keeps an end index which should be computed as the smaller value between start+count

and the length of userLoanParamSets.

21/43 PeckShield Audit Report #: 2020-21

https://github.com/bZxNetwork/contractsV2/commit/890d47639ae8ea2e3f24face4baff626d977167c

Confidential

However, the current implementation computes the end as the smaller value between count and the
length of userLoanParamSets, which is a wrong implementation, leading to an incorrect loanParamsList
returned. For example, when set.values.length=5, start=2, and count=1, the current implementation
returns an empty loanParamsList since end=1 and start > end.

97 f unc t i on getLoanParamsL i s t (
98 address owner ,
99 uint256 s t a r t ,

100 uint256 count)
101 ex te rna l
102 view
103 r e tu rn s (bytes32 [] memory l o anPa ramsL i s t)
104 {
105 Enumerab leBytes32Set . Bytes32Set storage s e t = userLoanParamSets [owner] ;

107 uint256 end = count . min256 (s e t . v a l u e s . l ength) ;
108 i f (end == 0 || s t a r t >= end) {
109 re tu rn l o anPa ramsL i s t ;
110 }

Listing 3.14: LoanSettings. sol

Recommendation Compute end as the smaller value between (start + count) and set.values

.length.

Status This issue has been addressed by fixing the end calculation in this commit: 6ab74ba.

3.9 Inconsistent Fee Calculation in getBorrowAmount() and
getRequiredCollateral()

• ID: PVE-009

• Severity: Medium

• Likelihood: High

• Impact: Low

• Target: LoanTokenLogicStandard

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

In the loan token contract, the getDepositAmountForBorrow() viewer function allows the caller to
get the depositAmount from the borrowAmount. In particular, the getRequiredCollateral() function in
the bZx contract is invoked to calculate collateralAmountRequired. As shown in the following code
snippets, the fee is added to the collateralAmountRequired based on the rate and the borrowAmount.

162 uint256 f e e = isTorqueLoan ?
163 _getBorrowingFee (c o l l a t e r a lAmoun tRequ i r e d) :

22/43 PeckShield Audit Report #: 2020-21

https://github.com/bZxNetwork/contractsV2/commit/6ab74bae5fefd7ebe0c815eae0beb66ca1b2ad18

Confidential

164 _getTradingFee (c o l l a t e r a lAmoun tRequ i r e d) ;
165 i f (f e e != 0) {
166 c o l l a t e r a lAmoun tRequ i r e d = co l l a t e r a lAmoun tRequ i r e d
167 . add (f e e) ;
168 }

Listing 3.15: LoanOpenings:: getRequiredCollateral ()

On the other hand, the getBorrowAmountForDeposit() function in the loan token contract also
allows the caller to get the borrowAmount from the depositAmount. As shown in the following code
snippets, the fee is substrated from the borrowAmount.

189 uint256 f e e = isTorqueLoan ?
190 _getBorrowingFee (c o l l a t e r a l) :
191 _getTradingFee (c o l l a t e r a l) ;
192 i f (f e e != 0) {
193 c o l l a t e r a l = c o l l a t e r a l
194 . sub (f e e) ;
195 }

197 i f (loanToken == c o l l a t e r a l T o k e n) {
198 borrowAmount = c o l l a t e r a l
199 . mul (10∗∗20)
200 . d i v (marginAmount) ;
201 } e l s e {
202 (uint256 sourceToDestRate , uint256 s ou r c eToDe s tP r e c i s i o n) = IP r i c e F e e d s (

p r i c e F e e d s) . queryRate (
203 c o l l a t e r a l T o k e n ,
204 loanToken
205) ;
206 i f (s ou r c eToDe s tP r e c i s i o n != 0) {
207 borrowAmount = c o l l a t e r a l
208 . mul (10∗∗20)
209 . d i v (marginAmount)
210 . mul (sourceToDestRate)
211 . d i v (s ou r c eToDe s tP r e c i s i o n) ;
212 }
213 }

Listing 3.16: LoanOpenings::getBorrowAmount()

We believe it’s not a fair fee calculation. For example, let’s say the fee rate is 0.3% and someone
wants to deposit around 1,000 DAI for borrowing around 2 ETH. If we calculate the depositAmount

from borrowAmount, 1,000 DAI could borrow 2 × (1, 000∕1, 003) = 1.99401795 ETH. But, if we
calculate the borrowAmount from depositAmount, 2×(1−0.3%) = 1.994 ETH could be borrowed. Here,
we see the 1.99401795 − 1.994 = 0.00001795 ETH difference, which is due to the inconsistent fee
calculation. A fair calculation should be depositAmount = depositAmount∕(1 − 0.3%).

Recommendation Fix the fee calculation on the depositAmount side as depositAmount =
depositAmount∕(1 − fee).

23/43 PeckShield Audit Report #: 2020-21

Confidential

Status This issue has been addressed by fixing the fee calculation in this commit: 0e98605.

3.10 Reentrancy Risk in withdrawAccruedInterest()

• ID: PVE-010

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: LoanTokenLogicStandard

• Category: Security Features [6]

• CWE subcategory: CWE-287 [4]

Description

In the LoanMaintenance contract, the external function, i.e., withdrawAccruedInterest(), allows users
to collect the outstanding interest. We identified a reentrancy risk such that a bad actor could redo
the interest collection from LoanMaintenance contract even the interest may not be due yet.

144 f unc t i on w i t hd r awAcc r u ed I n t e r e s t (
145 address loanToken)
146 ex te rna l
147 {
148 // pay outstanding interest to lender
149 _pay I n t e r e s t (
150 msg . sender , // lender
151 loanToken
152) ;
153 }

Listing 3.17: LoanMaintenance::withdrawAccruedInterest()

The reentrancy risk is in the underlying function, _payInterest(), which invokes _payInterestTransfer
() (line 40) to pay the interestToken to lender. As shown in the code snippets, the time frame be-
tween block.timestamp and lenderInterestLocal.updatedTimestamp is used to calculate interestOwedNow

. However, the lenderInterestLocal.updatedTimestamp is reset after the _payInterestTransfer() call,
which leads to a reentrancy scenario.

17 f unc t i on _pay I n t e r e s t (
18 address l e nde r ,
19 address i n t e r e s tTok e n)
20 i n t e r n a l
21 {
22 L e n d e r I n t e r e s t s torage l e n d e r I n t e r e s t L o c a l = l e n d e r I n t e r e s t [l e n d e r] [

i n t e r e s tTok e n] ;

24 uint256 interestOwedNow = 0 ;
25 i f (l e n d e r I n t e r e s t L o c a l . owedPerDay != 0 && l e n d e r I n t e r e s t L o c a l . updatedTimestamp

!= 0) {
26 interestOwedNow = block . timestamp

24/43 PeckShield Audit Report #: 2020-21

https://github.com/bZxNetwork/contractsV2/commit/0e986052d84a11fb5b3ccdc672bfeb78e111be0a

Confidential

27 . sub (l e n d e r I n t e r e s t L o c a l . updatedTimestamp)
28 . mul (l e n d e r I n t e r e s t L o c a l . owedPerDay)
29 . d i v (86400) ;

31 i f (interestOwedNow > l e n d e r I n t e r e s t L o c a l . owedTotal)
32 interestOwedNow = l e n d e r I n t e r e s t L o c a l . owedTotal ;

34 i f (interestOwedNow != 0) {
35 l e n d e r I n t e r e s t L o c a l . p a i dTo ta l = l e n d e r I n t e r e s t L o c a l . p a i dTo ta l
36 . add (interestOwedNow) ;
37 l e n d e r I n t e r e s t L o c a l . owedTotal = l e n d e r I n t e r e s t L o c a l . owedTotal
38 . sub (interestOwedNow) ;

40 _pay I n t e r e s tT r a n s f e r (
41 l e nde r ,
42 i n t e r e s tToken ,
43 interestOwedNow
44) ;
45 }
46 }

48 l e n d e r I n t e r e s t L o c a l . updatedTimestamp = block . timestamp ;
49 }

Listing 3.18: InterestUser :: _payInterest()

If the interestToken is an ERC777, the _payInterestTransfer() could be hijacked after the transfer

() to re-enter the unprotected withdrawAccruedInterest() function. Since the lenderInterestLocal.

updatedTimestamp is not reset yet, interestOwedNow would be re-calculated and interestToken would
be sent out again.

Fortunately, the interestToken is not an ERC777 token such that we set the severity of this issue
informational.

Recommendation Add reentrancy guard in the entry point of withdrawAccruedInterest() or
apply the Checks-Effects-Interactions [2] pattern.

Status This issue has been addressed by resetting the lenderInterestLocal.updatedTimestamp

before the _payInterestTransfer() call in this commit: 0e98605.

25/43 PeckShield Audit Report #: 2020-21

https://github.com/bZxNetwork/contractsV2/commit/0e986052d84a11fb5b3ccdc672bfeb78e111be0a

Confidential

3.11 Unused Variables in _initializeLoan()/_closeLoan()

• ID: PVE-011

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: LoanOpenings, LoanClosings

• Category: Coding Practices [7]

• CWE subcategory: CWE-1041 [3]

Description

While reviewing the lifetime of a loan, we notice that the variable pendingTradesId that is initialized
in _initializeLoan() when a loan is created is never used (even after the loan is closed by the
_closeLoan() function).

495 l o a nLo c a l = Loan ({
496 i d : l o an Id ,
497 l oanParams Id : l oanParamsLoca l . id ,
498 pend ingTrade s I d : 0 ,
499 a c t i v e : true ,
500 p r i n c i p a l : n ewPr i n c i pa l ,
501 c o l l a t e r a l : 0 , // calculated later
502 s ta r tT imestamp : block . timestamp ,
503 endTimestamp : 0 , // calculated later
504 s t a r tMa r g i n : i n i t i a l M a r g i n ,
505 s t a r t R a t e : 0 , // queried later
506 bor rower : bor rower ,
507 l e n d e r : l e n d e r
508 }) ;

Listing 3.19: LoanOpenings::_initializeLoan ()

As shown in the following code snippets, the only use case of pendingTradesId is setting it to 0
when the loan is closed and removed from the lenderLoanSets and borrowerLoanSets.

875 f unc t i on _closeLoan (
876 Loan storage l o anLoca l ,
877 uint256 loanCloseAmount)
878 i n t e r n a l
879 r e tu rn s (uint256)
880 {
881 r equ i r e (loanCloseAmount != 0 , "nothing to close") ;

883 i f (loanCloseAmount == l o anLo c a l . p r i n c i p a l) {
884 l o a nLo c a l . p r i n c i p a l = 0 ;
885 l o a nLo c a l . a c t i v e = f a l s e ;
886 l o a nLo c a l . endTimestamp = block . timestamp ;
887 l o a nLo c a l . p end ingTrade s I d = 0 ;
888 a c t i v e Lo an sS e t . remove (l o a nLo c a l . i d) ;
889 l e nd e rLoanSe t s [l o a nLo c a l . l e n d e r] . remove (l o a nLo c a l . i d) ;

26/43 PeckShield Audit Report #: 2020-21

Confidential

890 bor rowerLoanSet s [l o a nLo c a l . bo r rower] . remove (l o a nLo c a l . i d) ;
891 } e l s e {
892 l o a nLo c a l . p r i n c i p a l = l o anLo c a l . p r i n c i p a l
893 . sub (loanCloseAmount) ;
894 }
895 }

Listing 3.20: LoanClosings ::_closeLoan()

Recommendation Removed the unused pendingTradesId variable.

3.12 Inconsistent Book-Keeping Records/Events Data in
_payFeeReward()

• ID: PVE-012

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: FeesHelper

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

In the FeesHelper contract, the _payFeeReward() helper function allows the caller to pay protocol tokens
to user as rewards. However, we identified that the amount paid to the user could be inconsistent
when compared with internal book-keeping records (i.e., protocolTokenPaid) as the underlying function
_withdrawProtocolToken() could transfer less than rewardAmount to the user. Based on that, the
EarnReward() event emitted after updating the protocolTokenPaid could also be inaccurate.

173 i f (rewardAmount != 0) {
174 address rewardToken ;
175 (rewardToken , s u c c e s s) = _withdrawProtocolToken (
176 use r ,
177 rewardAmount
178) ;
179 i f (s u c c e s s) {
180 pro toco lTokenPa id = pro toco lTokenPa id
181 . add (rewardAmount) ;

183 emit EarnReward (
184 use r ,
185 rewardToken ,
186 l o an I d ,
187 rewardAmount
188) ;
189 }

27/43 PeckShield Audit Report #: 2020-21

Confidential

190 }

Listing 3.21: FeesHelper ::_payFeeReward()

As shown in the following code snippets, the _withdrawProtocolToken() function mentioned earlier
could transfer less than amount out when there’s no enough protocol token balance.

15 f unc t i on _withdrawProtocolToken (
16 address r e c e i v e r ,
17 uint256 amount)
18 i n t e r n a l
19 r e tu rn s (address , bool)
20 {
21 uint256 withdrawAmount = amount ;

23 uint256 balance = protoco lTokenHe ld ;
24 i f (withdrawAmount > balance) {
25 withdrawAmount = balance ;
26 }
27 i f (withdrawAmount == 0) {
28 re tu rn (p ro toco lTokenAddres s , f a l s e) ;
29 }

31 pro toco lTokenHe ld = balance
32 . sub (withdrawAmount) ;

34 IERC20 (p ro toco lTokenAddre s s) . s a f eT r a n s f e r (
35 r e c e i v e r ,
36 withdrawAmount
37) ;

39 re tu rn (p ro toco lTokenAddres s , t rue) ;
40 }

Listing 3.22: ProtocolTokenUser::_withdrawProtocolToken()

Recommendation Add a return value in the _withdrawProtocolToken() to report the caller the
exact amount of protocol token transferred.

Status This issue has been addressed by returning the rewardAmount in _withdrawProtocolToken()

and refactoring the callers such as _payFeeReward() in this commit: 4e06df4.

28/43 PeckShield Audit Report #: 2020-21

https://github.com/bZxNetwork/contractsV2/commit/4e06df4cb72027be1fe3eeed0b43ca622800e852

Confidential

3.13 Incompatibility With Deflationary Tokens in
swapExternal()

• ID: PVE-013

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: SwapsExternal

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

In the SwapsExternal contract, the swapExternal() public function allows users to swap sourceToken

to destToken through external exchange services. Before doing the swap, the swapExternal() requires
the msg.sender to transfer in the sourceToken with the safeTransferFrom() handler if the caller is
not paying ether. When transferring standard ERC20 tokens, these asset-transferring routines work
as expected: namely the account’s internal asset balances are always consistent with actual token
balances maintained in individual ERC20 token contracts.

58 } e l s e {
59 IERC20 (sourceToken) . s a f eT ran s f e rF rom (
60 msg . sender ,
61 address (t h i s) ,
62 sourceTokenAmount
63) ;
64 }

66 (destTokenAmountReceived , sourceTokenAmountUsed) = _swapsCal l (
67 [
68 sourceToken ,
69 destToken ,
70 r e c e i v e r ,
71 re turnToSender ,
72 msg . sender // user
73] ,
74 [
75 sourceTokenAmount , // minSourceTokenAmount
76 sourceTokenAmount , // maxSourceTokenAmount
77 requi redDestTokenAmount
78] ,

Listing 3.23: SwapsExternal::swapExternal()

However, in the cases of deflationary tokens, as shown in the above code snippets, the input
amount may not be equal to the received amount due to the charged (and burned) transaction fee.
As a result, this may not meet the assumption behind these low-level asset-transferring routines. In

29/43 PeckShield Audit Report #: 2020-21

Confidential

other words, the above operations may introduce unexpected balance inconsistencies when compar-
ing internal asset records with external ERC20 token contracts in the cases of deflationary tokens.
Apparently, these balance inconsistencies are damaging to accurate portfolio management and affects
protocol-wide operation and maintenance.

Recommendation Check the sourceToken balance before and after the safeTransferFrom() call.

Status This issue has been addressed by checking the balance before and after the safeTransferFrom

() call in this commit: 2cc224c.

3.14 Improved Arithmetic Operations

• ID: PVE-014

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: LoanTokenLogicStandard,

LoanOpenings

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

While reviewing the arithmetic operations in bZx v2.0, we identified some cases which could be
further improved.

Case I The mul(365) in line 1003 could be done before div(assetBorrow) (line 1002) to improve
the precision of interestOwedPerDay.

992 f unc t i on _avgBor rowIn te r e s tRate (
993 uint256 as se tBor row)
994 i n t e r n a l
995 view
996 r e tu rn s (uint256)
997 {
998 i f (a s s e tBor row != 0) {
999 (uint256 in terestOwedPerDay ,) = _g e tA l l I n t e r e s t () ;

1000 re tu rn i n te res tOwedPerDay
1001 . mul (10∗∗20)
1002 . d i v (a s s e tBor row)
1003 . mul (365) ;
1004 }
1005 }

Listing 3.24: LoanTokenLogicStandard::_avgBorrowInterestRate()

Case II The mul(maxDuration) in line 1191 could be done before div(31536000) (line 1190) to
improve the precision of interestRate.

30/43 PeckShield Audit Report #: 2020-21

https://github.com/bZxNetwork/contractsV2/commit/2cc224cafe649c6b47de1d997fbf359db43784a7

Confidential

1179 f unc t i on _adjus tVa lue (
1180 uint256 i n t e r e s t R a t e ,
1181 uint256 maxDuration ,
1182 uint256 marginAmount)
1183 i n t e r n a l
1184 pure
1185 r e tu rn s (uint256)
1186 {
1187 re tu rn maxDurat ion != 0 ?
1188 i n t e r e s t R a t e
1189 . mul (10∗∗20)
1190 . d i v (31536000) // 86400 * 365
1191 . mul (maxDurat ion)
1192 . d i v (marginAmount)
1193 . add (10∗∗20) :
1194 10∗∗20;
1195 }

Listing 3.25: LoanTokenLogicStandard::_adjustValue()

Case III The mul(sourceToDestRate) in line 210 could be done before div(marginAmount) (line
209) to improve the precision of borrowAmount.

197 i f (loanToken == c o l l a t e r a l T o k e n) {
198 borrowAmount = c o l l a t e r a l
199 . mul (10∗∗20)
200 . d i v (marginAmount) ;
201 } e l s e {
202 (uint256 sourceToDestRate , uint256 s ou r c eToDe s tP r e c i s i o n) = IP r i c e F e e d s (

p r i c e F e e d s) . queryRate (
203 c o l l a t e r a l T o k e n ,
204 loanToken
205) ;
206 i f (s ou r c eToDe s tP r e c i s i o n != 0) {
207 borrowAmount = c o l l a t e r a l
208 . mul (10∗∗20)
209 . d i v (marginAmount)
210 . mul (sourceToDestRate)
211 . d i v (s ou r c eToDe s tP r e c i s i o n) ;
212 }
213 }

Listing 3.26: LoanOpenings::getBorrowAmount()

Case IV While calculating the lendingFee in _payInterestTransfer(), we normally want to
round the fee up instead of rounding it down. Based on that, we could use divCeil() to replace the
div(10**20) in line 205 to round up the lendingFee to the nearest N × 1020

197 f unc t i on _pay I n t e r e s tT r a n s f e r (
198 address l e nde r ,
199 address i n t e r e s tToken ,
200 uint256 interestOwedNow)
201 i n t e r n a l

31/43 PeckShield Audit Report #: 2020-21

Confidential

202 {
203 uint256 l e n d i n gFe e = interestOwedNow
204 . mul (l e nd i n gFe ePe r c en t)
205 . d i v (10∗∗20) ;

Listing 3.27: InterestUser :: _payInterestTransfer ()

Recommendation Do multiplications before devisions to improve the precision of the arithmetic
operations. Also, use divCeil() to round-up the fee.

Status This issue has been addressed in this commit: 2cc224c.

3.15 Business Error in _updateCheckpoints

• ID: PVE-015

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: LoanTokenLogicStandard,

LoanOpenings

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

In the loan token contract, whenever some tokens are minted or burned, the _updateCheckpoints()

function is invoked to update the stats to reflect the balance changes. However, we identified a busi-
ness logic error while updating the _currentProfit storage indexed by the hash of iToken_ProfitSoFar.

335 f unc t i on _updateCheckpo ints (
336 address _user ,
337 uint256 _oldBalance ,
338 uint256 _newBalance ,
339 uint256 _cu r r en tP r i c e)
340 i n t e r n a l
341 {
342 // keccak256 (" iToken_ProfitSoFar ")
343 bytes32 s l o t = keccak256 (
344 ab i . encodePacked (_user , uint256 (0

x37aa2b7d583612f016e4a4de4292cb015139b3d7762663d06a53964912ea2fb6))
345) ;

347 uint256 _cu r r e n tP r o f i t ;
348 i f (_oldBalance != 0 && _newBalance != 0) {
349 _cu r r e n tP r o f i t = _pro f i tO f (
350 s l o t ,
351 _oldBalance ,
352 _cur r en tPr i c e ,
353 che ckpo i n tP r i c e s_ [_user]

32/43 PeckShield Audit Report #: 2020-21

https://github.com/bZxNetwork/contractsV2/commit/2cc224cafe649c6b47de1d997fbf359db43784a7

Confidential

354) ;
355 } e l s e i f (_newBalance == 0) {
356 _cu r r en tP r i c e = 0 ;
357 }

359 assembly {
360 s s t o r e (s l o t , _ cu r r e n tP r o f i t)
361 }

Listing 3.28: LoanTokenLogicStandard::_updateCheckpoints()

As shown in the above code snippets, the _currentPrice is re-calculated in line 349 only when
_oldBalance != 0 && _newBalance != 0. Meanwhile, we don’t need to sstore the _currentPrice when
it is not re-calculated. In addition, since the local variable _currentPrice is 0 as it’s not initialized,
the sstore in line 360 typically clear the storage if the _oldBalance == 0 or _newBalance == 0.

Recommendation Store _currentPrice into the storage only when it’s updated.

335 f unc t i on _updateCheckpo ints (
336 address _user ,
337 uint256 _oldBalance ,
338 uint256 _newBalance ,
339 uint256 _cu r r en tP r i c e)
340 i n t e r n a l
341 {
342 // keccak256 (" iToken_ProfitSoFar ")
343 bytes32 s l o t = keccak256 (
344 ab i . encodePacked (_user , uint256 (0

x37aa2b7d583612f016e4a4de4292cb015139b3d7762663d06a53964912ea2fb6))
345) ;

347 uint256 _cu r r e n tP r o f i t ;
348 i f (_oldBalance != 0 && _newBalance != 0) {
349 _cu r r e n tP r o f i t = _pro f i tO f (
350 s l o t ,
351 _oldBalance ,
352 _cur r en tPr i c e ,
353 che ckpo i n tP r i c e s_ [_user]
354) ;

356 assembly {
357 s s t o r e (s l o t , _ cu r r e n tP r o f i t)
358 }
359 }

361 i f (_newBalance == 0) {
362 _cu r r en tP r i c e = 0 ;
363 }

Listing 3.29: LoanTokenLogicStandard::_updateCheckpoints()

33/43 PeckShield Audit Report #: 2020-21

Confidential

Status This issue has been addressed by refactoring the _updateCheckpoints() function in this
commit: 2cc224c.

3.16 Business Logic Error in queryReturn()

• ID: PVE-016

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: PriceFeeds

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

As indicated in the comments (line 66), the queryReturn() function should return 0 during a pause
(i.e., globalPricingPaused == true). However, the underlying _queryRate() may revert, which makes
the implementation not consistent to the design.

66 //// NOTE: This function returns 0 during a pause , rather than a revert. Ensure
calling contracts handle correctly. ///

67 f unc t i on que ryRetu rn (
68 address sourceToken ,
69 address destToken ,
70 uint256 sourceAmount)
71 pub l i c
72 view
73 r e tu rn s (uint256 destAmount)
74 {
75 (uint256 r a t e , uint256 p r e c i s i o n) = _queryRate (
76 sourceToken ,
77 destToken
78) ;

80 destAmount = sourceAmount
81 . mul (r a t e)
82 . d i v (p r e c i s i o n) ;
83 }

Listing 3.30: PriceFeeds :: queryReturn()

As shown in the following code snippets, the first line in _queryRate() reverts during a pause (line
344), which makes its caller, queryReturn(), reverts during a pause as well.

337 f unc t i on _queryRate (
338 address sourceToken ,
339 address destToken)
340 i n t e r n a l
341 view
342 r e tu rn s (uint256 r a t e , uint256 p r e c i s i o n)

34/43 PeckShield Audit Report #: 2020-21

https://github.com/bZxNetwork/contractsV2/commit/2cc224cafe649c6b47de1d997fbf359db43784a7

Confidential

343 {
344 r equ i r e (! g l o b a lP r i c i n gPau s ed , "pricing is paused") ;

Listing 3.31: PriceFeeds :: _queryRate()

Recommendation Check globalPricingPaused in queryReturn() and return 0 when globalPricingPaused

== true.

Status This issue has been addressed in this commit: 2cc224c.

3.17 Other Suggestions

Last but not least, it is always important to develop necessary risk-control mechanisms and make
contingency plans, which may need to be exercised before the mainnet deployment. The risk-control
mechanisms need to kick in at the very moment when the contracts are being deployed in mainnet.

35/43 PeckShield Audit Report #: 2020-21

https://github.com/bZxNetwork/contractsV2/commit/2cc224cafe649c6b47de1d997fbf359db43784a7

Confidential

4 | Conclusion

In this audit, we thoroughly analyzed the bZx v2.0 design and implementation. The system presents
a unique offering of lending and margin trading platform, and we are impressed by the design and
implementation. The current code base is well organized and those identified issues are promptly
confirmed and fixed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

36/43 PeckShield Audit Report #: 2020-21

Confidential

5 | Appendix

5.1 Basic Coding Bugs

5.1.1 Constructor Mismatch

• Description: Whether the contract name and its constructor are not identical to each other.

• Result: Not found

• Severity: Critical

5.1.2 Ownership Takeover

• Description: Whether the set owner function is not protected.

• Result: Not found

• Severity: Critical

5.1.3 Redundant Fallback Function

• Description: Whether the contract has a redundant fallback function.

• Result: Not found

• Severity: Critical

5.1.4 Overflows & Underflows

• Description: Whether the contract has general overflow or underflow vulnerabilities [11, 12,
13, 14, 16].

• Result: Not found

• Severity: Critical

37/43 PeckShield Audit Report #: 2020-21

Confidential

5.1.5 Reentrancy

• Description: Reentrancy [17] is an issue when code can call back into your contract and change
state, such as withdrawing ETHs.

• Result: Not found

• Severity: Critical

5.1.6 Money-Giving Bug

• Description: Whether the contract returns funds to an arbitrary address.

• Result: Not found

• Severity: High

5.1.7 Blackhole

• Description: Whether the contract locks ETH indefinitely: merely in without out.

• Result: Not found

• Severity: High

5.1.8 Unauthorized Self-Destruct

• Description: Whether the contract can be killed by any arbitrary address.

• Result: Not found

• Severity: Medium

5.1.9 Revert DoS

• Description: Whether the contract is vulnerable to DoS attack because of unexpected revert.

• Result: Not found

• Severity: Medium

38/43 PeckShield Audit Report #: 2020-21

Confidential

5.1.10 Unchecked External Call

• Description: Whether the contract has any external call without checking the return value.

• Result: Not found

• Severity: Medium

5.1.11 Gasless Send

• Description: Whether the contract is vulnerable to gasless send.

• Result: Not found

• Severity: Medium

5.1.12 Send Instead Of Transfer

• Description: Whether the contract uses send instead of transfer.

• Result: Not found

• Severity: Medium

5.1.13 Costly Loop

• Description: Whether the contract has any costly loop which may lead to Out-Of-Gas excep-
tion.

• Result: Not found

• Severity: Medium

5.1.14 (Unsafe) Use Of Untrusted Libraries

• Description: Whether the contract use any suspicious libraries.

• Result: Not found

• Severity: Medium

39/43 PeckShield Audit Report #: 2020-21

Confidential

5.1.15 (Unsafe) Use Of Predictable Variables

• Description: Whether the contract contains any randomness variable, but its value can be
predicated.

• Result: Not found

• Severity: Medium

5.1.16 Transaction Ordering Dependence

• Description: Whether the final state of the contract depends on the order of the transactions.

• Result: Not found

• Severity: Medium

5.1.17 Deprecated Uses

• Description: Whether the contract use the deprecated tx.origin to perform the authorization.

• Result: Not found

• Severity: Medium

5.2 Semantic Consistency Checks

• Description: Whether the semantic of the white paper is different from the implementation of
the contract.

• Result: Not found

• Severity: Critical

5.3 Additional Recommendations

5.3.1 Avoid Use of Variadic Byte Array

• Description: Use fixed-size byte array is better than that of byte[], as the latter is a waste of
space.

• Result: Not found

• Severity: Low

40/43 PeckShield Audit Report #: 2020-21

Confidential

5.3.2 Make Visibility Level Explicit

• Description: Assign explicit visibility specifiers for functions and state variables.

• Result: Not found

• Severity: Low

5.3.3 Make Type Inference Explicit

• Description: Do not use keyword var to specify the type, i.e., it asks the compiler to deduce
the type, which is not safe especially in a loop.

• Result: Not found

• Severity: Low

5.3.4 Adhere To Function Declaration Strictly

• Description: Solidity compiler (version 0.4.23) enforces strict ABI length checks for return data
from calls() [1], which may break the the execution if the function implementation does NOT
follow its declaration (e.g., no return in implementing transfer() of ERC20 tokens).

• Result: Not found

• Severity: Low

41/43 PeckShield Audit Report #: 2020-21

Confidential

References

[1] axic. Enforcing ABI length checks for return data from calls can be breaking. https://github.

com/ethereum/solidity/issues/4116.

[2] ethereum. Security Considerations. https://solidity.readthedocs.io/en/v0.6.4/

security-considerations.html#use-the-checks-effects-interactions-pattern.

[3] MITRE. CWE-1041: Use of Redundant Code. https://cwe.mitre.org/data/definitions/1041.

html.

[4] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[5] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[6] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[7] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[8] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[9] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

42/43 PeckShield Audit Report #: 2020-21

https://github.com/ethereum/solidity/issues/4116
https://github.com/ethereum/solidity/issues/4116
https://solidity.readthedocs.io/en/v0.6.4/security-considerations.html#use-the-checks-effects-interactions-pattern
https://solidity.readthedocs.io/en/v0.6.4/security-considerations.html#use-the-checks-effects-interactions-pattern
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html

Confidential

[10] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[11] PeckShield. ALERT: New batchOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-

10299). https://www.peckshield.com/2018/04/22/batchOverflow/.

[12] PeckShield. New burnOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

11239). https://www.peckshield.com/2018/05/18/burnOverflow/.

[13] PeckShield. New multiOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

10706). https://www.peckshield.com/2018/05/10/multiOverflow/.

[14] PeckShield. New proxyOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-10376).

https://www.peckshield.com/2018/04/25/proxyOverflow/.

[15] PeckShield. PeckShield Inc. https://www.peckshield.com.

[16] PeckShield. Your Tokens Are Mine: A Suspicious Scam Token in A Top Exchange. https:

//www.peckshield.com/2018/04/28/transferFlaw/.

[17] Solidity. Warnings of Expressions and Control Structures. http://solidity.readthedocs.io/en/

develop/control-structures.html.

43/43 PeckShield Audit Report #: 2020-21

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com/2018/04/22/batchOverflow/
https://www.peckshield.com/2018/05/18/burnOverflow/
https://www.peckshield.com/2018/05/10/multiOverflow/
https://www.peckshield.com/2018/04/25/proxyOverflow/
https://www.peckshield.com
https://www.peckshield.com/2018/04/28/transferFlaw/
https://www.peckshield.com/2018/04/28/transferFlaw/
http://solidity.readthedocs.io/en/develop/control-structures.html
http://solidity.readthedocs.io/en/develop/control-structures.html

	Introduction
	About bZx v2.0
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Business Logic Error in _burnToken()
	Denial-of-Service Risk in borrow()
	Business Logic Error in marginTrade()
	Incompatible _dsrWithdraw() Return Value
	Incessive _dsrDeposit() Call in _mintToken()
	Zero Amount Flash Loan
	Confused Deputy in borrow()/marginTrade()
	Business Logic Error in getLoanParamsList()
	Inconsistent Fee Calculation in getBorrowAmount() and getRequiredCollateral()
	Reentrancy Risk in withdrawAccruedInterest()
	Unused Variables in _initializeLoan()/_closeLoan()
	Inconsistent Book-Keeping Records/Events Data in _payFeeReward()
	Incompatibility With Deflationary Tokens in swapExternal()
	Improved Arithmetic Operations
	Business Error in _updateCheckpoints
	Business Logic Error in queryReturn()
	Other Suggestions

	Conclusion
	Appendix
	Basic Coding Bugs
	Constructor Mismatch
	Ownership Takeover
	Redundant Fallback Function
	Overflows & Underflows
	Reentrancy
	Money-Giving Bug
	Blackhole
	Unauthorized Self-Destruct
	Revert DoS
	Unchecked External Call
	Gasless Send
	Send Instead Of Transfer
	Costly Loop
	(Unsafe) Use Of Untrusted Libraries
	(Unsafe) Use Of Predictable Variables
	Transaction Ordering Dependence
	Deprecated Uses

	Semantic Consistency Checks
	Additional Recommendations
	Avoid Use of Variadic Byte Array
	Make Visibility Level Explicit
	Make Type Inference Explicit
	Adhere To Function Declaration Strictly

	References

