
Public

SMART CONTRACT AUDIT REPORT

for

PERPETUAL PROTOCOL

Prepared By: Shuxiao Wang

Hangzhou, China
Sep. 7, 2020

1/40 PeckShield Audit Report #: 2020-46

sxwang@peckshield.com

Public

Document Properties

Client Perpetual Protocol
Title Smart Contract Audit Report
Target Perpetual Protocol
Version 1.0
Author Chiachih Wu
Auditors Chiachih Wu, Xuxian Jiang, Huaguo Shi
Reviewed by Jeff Liu
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 Sep. 7, 2020 Chiachih Wu Final Release
1.0-rc1 Sep. 3, 2020 Chiachih Wu Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/40 PeckShield Audit Report #: 2020-46

Public

Contents

1 Introduction 5
1.1 About Perpetual Protocol . 5
1.2 About PeckShield . 6
1.3 Methodology . 6
1.4 Disclaimer . 8

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Incompatibility With Deflationary Tokens in ClearingHouse::addMargin() 12
3.2 Redundant ERC20 Transfers in ClearingHouse::transferFee() 13
3.3 Missed Events and Error Handling in InsuranceFund 14
3.4 Business Logic Error in InsuranceFund::getTokenWithMaxValue() 15
3.5 Business Logic Error in RewardsDistribution::distributeRewards() 17
3.6 Gas Optimization in RewardsDistribution::removeRewardsDistribution() 19
3.7 Missed initializer Modifiers . 20
3.8 Reentrancy Risk in ClearingHouse::settlePosition() 21
3.9 Missed Sanity Checks Against _amm.open in ClearingHouse 23
3.10 Configurable Constant Variable in Amm . 25
3.11 Better Handling of Privilege Transfers . 27
3.12 Incompatibility With approve/transferFrom Race Prevention Tokens 28
3.13 Wrong Comments in StakingReserve::getUnstakableBalance() 29
3.14 Business Logic Error in StakingReserve::getLockedBalance() 30
3.15 Other Suggestions . 31

4 Conclusion 33

5 Appendix 34

3/40 PeckShield Audit Report #: 2020-46

Public

5.1 Basic Coding Bugs . 34
5.1.1 Constructor Mismatch . 34
5.1.2 Ownership Takeover . 34
5.1.3 Redundant Fallback Function . 34
5.1.4 Overflows & Underflows . 34
5.1.5 Reentrancy . 35
5.1.6 Money-Giving Bug . 35
5.1.7 Blackhole . 35
5.1.8 Unauthorized Self-Destruct . 35
5.1.9 Revert DoS . 35
5.1.10 Unchecked External Call . 36
5.1.11 Gasless Send . 36
5.1.12 Send Instead Of Transfer . 36
5.1.13 Costly Loop . 36
5.1.14 (Unsafe) Use Of Untrusted Libraries . 36
5.1.15 (Unsafe) Use Of Predictable Variables . 37
5.1.16 Transaction Ordering Dependence . 37
5.1.17 Deprecated Uses . 37

5.2 Semantic Consistency Checks . 37
5.3 Additional Recommendations . 37

5.3.1 Avoid Use of Variadic Byte Array . 37
5.3.2 Make Visibility Level Explicit . 38
5.3.3 Make Type Inference Explicit . 38
5.3.4 Adhere To Function Declaration Strictly . 38

References 39

4/40 PeckShield Audit Report #: 2020-46

Public

1 | Introduction

Given the opportunity to review the Perpetual Protocol design document and related smart contract
source code, we in the report outline our systematic approach to evaluate potential security issues in
the smart contract implementation, expose possible semantic inconsistencies between smart contract
code and design document, and provide additional suggestions or recommendations for improvement.
Our results show that the given branch of Perpetual Protocol can be further improved due to the
presence of several issues related to either security or performance. This document outlines our audit
results.

1.1 About Perpetual Protocol

Perpetual Protocol, formerly known as Strike Protocol, is designed as a decentralized perpetual con-
tract trading protocol for a list of assets with Uniswap-inspired Automated Market Makers (AMMs).
It also has a built-in Liquidity Reserve which backs and secures the AMMs, and a build-in staking
pool that provides a backstop for each virtual market. Similar to Uniswap, traders can trade with
virtual AMMs without counter-parties, PERP token holders can stake PERPs to staking pool and
collect transaction fees.

The basic information of Perpetual Protocol is as follows:

Table 1.1: Basic Information of Perpetual Protocol

Item Description
Issuer Perpetual Protocol

Website https://perp.fi/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report Sep. 7, 2020

In the following, we show the Git repository of reviewed files and the commit hash value used in

5/40 PeckShield Audit Report #: 2020-46

Public

this audit:

• https://github.com/Strike-Protocol/strike-monorepo.git (6136a33)

1.2 About PeckShield

PeckShield Inc. [15] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [10]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the

6/40 PeckShield Audit Report #: 2020-46

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/40 PeckShield Audit Report #: 2020-46

Public

contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [9], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this audit does not give any warranties on finding all possible security issues of the given
smart contract(s), i.e., the evaluation result does not guarantee the nonexistence of any further
findings of security issues. As one audit-based assessment cannot be considered comprehensive, we
always recommend proceeding with several independent audits and a public bug bounty program to
ensure the security of smart contract(s). Last but not least, this security audit should not be used
as investment advice.

8/40 PeckShield Audit Report #: 2020-46

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

9/40 PeckShield Audit Report #: 2020-46

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Perpetual Protocol implementation. During
the first phase of our audit, we studied the smart contract source code and ran our in-house static
code analyzer through the codebase. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 1

Medium 1

Low 3

Informational 9

Total 14

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/40 PeckShield Audit Report #: 2020-46

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 high-severity vulnerability,
1 medium-severity vulnerability, 3 low-severity vulnerabilities, and 9 informational recommendations.

Table 2.1: Key Perpetual Protocol Audit Findings

ID Severity Title Category Status
PVE-001 Low Incompatibility With Deflationary Tokens in

ClearingHouse::addMargin()
Business Logics Fixed

PVE-002 Info. Redundant ERC20 Transfers in
ClearingHouse::transferFee()

Business Logics Fixed

PVE-003 Info. Missed Events and Error Handling in
InsuranceFund

Coding Practices Fixed

PVE-004 Medium Business Logic Error in
InsuranceFund::getTokenWithMaxValue()

Business Logics Fixed

PVE-005 Info. Business Logic Error in
RewardsDistribution::distributeRewards()

Business Logics Fixed

PVE-006 Info. Gas Optimization in
RewardsDistribution::removeRewardsDistribution()

Business Logics Fixed

PVE-007 Info. Missed initializer Modifiers Business Logics Fixed
PVE-008 High Reentrancy Risk in

ClearingHouse::settlePosition()
Security Features Fixed

PVE-009 Info. Missed Sanity Checks Against _amm.open in
ClearingHouse

Coding Practices Fixed

PVE-010 Info. Configurable Constant Variable in Amm Business Logics Confirmed
PVE-011 Info. Better Handling of Ownership Transfers Business Logics Fixed
PVE-012 Low Incompatibility With approve/transferFrom Race

Prevention Tokens
Business Logics Fixed

PVE-013 Info. Wrong Comments in
StakingReserve::getUnstakableBalance()

Business Logics Fixed

PVE-014 Low Business Logic Error in
StakingReserve::getLockedBalance()

Business Logics Fixed

Please refer to Section 3 for details.

11/40 PeckShield Audit Report #: 2020-46

Public

3 | Detailed Results

3.1 Incompatibility With Deflationary Tokens in
ClearingHouse::addMargin()

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: ClearingHouse.sol

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

In the ClearingHouse contract, the addMargin() external function allows an user to add margin to
increase the margin ratio of her personal position. After updating the position stats, the addMargin()

function requires the msg.sender to transfer in the _amm.quoteAsset() tokens with the transferFrom

() handler. When transferring standard ERC20 tokens, these asset-transferring routines work as
expected: namely the account’s internal asset balances are always consistent with actual token
balances maintained in individual ERC20 token contracts

211 f unc t i on addMargin (Amm _amm, Decimal . d ec ima l c a l l d a t a _addedMargin) ex te rna l
whenNotPaused () nonReent rant () {

212 // update margin part in personal position
213 address t r a d e r = _msgSender () ;
214 updateMarg in (_amm, t r ad e r , MixedDecimal . f romDecimal (_addedMargin)) ;

216 // transfer token from trader
217 DecimalERC20 . t r an s f e rF r om (_amm. quoteAs se t () , t r ad e r , address (c l e a r i n gHou s eVau l t)

, _addedMargin) ;

219 // emit event
220 emit MarginAdded (t r ad e r , address (_amm) , _addedMargin . t oU in t ()) ;
221 }

Listing 3.1: ClearingHouse :: addMargin()

12/40 PeckShield Audit Report #: 2020-46

Public

However, in the cases of deflationary tokens, as shown in the above code snippets, the input
amount may not be equal to the received amount due to the charged (and burned) transaction fee.
As a result, this may not meet the assumption behind these low-level asset-transferring routines. In
other words, the above operations may introduce unexpected balance inconsistencies when compar-
ing internal asset records with external ERC20 token contracts in the cases of deflationary tokens.
Apparently, these balance inconsistencies are damaging to accurate portfolio management and affect
protocol-wide operation and maintenance.

Recommendation Check the _amm.quoteAsset() balance before and after the transferFrom()

call.

Status This issue has been addressed by checking the token balance before and after the
transferFrom() call in this PR: 1204.

3.2 Redundant ERC20 Transfers in ClearingHouse::transferFee()

• ID: PVE-002

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: ClearingHouse.sol

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

In the ClearingHouse contract, the internal function transferFee() is invoked by openPositioin() and
closePosition() for collecting the fee from the trader. While reviewing the logic of fee transfers, we
identified that the current implementation could be improved by reducing one transferFrom() call,
which would reduce gas consumption.

878 f unc t i on t r a n s f e r F e e (address _from , Amm _amm, Decimal . d ec ima l memory
_po s i t i o nNo t i o n a l)

879 i n t e r n a l
880 r e tu rn s (Decimal . d ec ima l memory)
881 {
882 (Decimal . d ec ima l memory t o l l , Decimal . dec ima l memory sp r ead) = ammMgr . c a l cF e e (

_amm, _po s i t i o nNo t i o n a l) ;
883 i f (t o l l . t oU in t () == 0 && spread . t oU in t () == 0) {
884 re tu rn Decimal . z e r o () ;
885 }

887 IERC20 quoteAs se t = _amm. quoteAs se t () ;
888 Decimal . d ec ima l memory f e e = t o l l . addD(sp r ead) ;
889 DecimalERC20 . t r an s f e rF r om (quoteAsset , _from , address (t h i s) , f e e) ;

13/40 PeckShield Audit Report #: 2020-46

https://github.com/perpetual-protocol/perp-monorepo/pull/1204

Public

891 // transfer spread to insurance fund
892 DecimalERC20 . t r a n s f e r (quoteAsset , address (c l e a r i n gHou s eVau l t) , s p r ead) ;
893 c l e a r i n gHou s eVau l t . t r a n s f e rTo I n s u r an c eFund (quoteAsset , sp r ead) ;

895 // transfer toll to ammMgr
896 DecimalERC20 . t r a n s f e r (quoteAsset , address (ammMgr) , t o l l) ;
897 ammMgr . i n c r e a s e T o l l (_amm, t o l l) ;

899 re tu rn f e e ;
900 }

Listing 3.2: ClearingHouse. sol

As shown in the code snippets above, the first transferFrom() moves fee of quoteAsset from _from

to address(this) in line 889. Note that fee equals to toll + spread as shown in line 888. Later on,
those toll + spread is transfer()’ed to clearingHouseVault and ammMgr separately in lines 892 and
896. Since both of the latter two transfer() calls consume quoteAsset tokens of address(this), we
could simplify them by transferring tokens from the _from address to clearingHouseVault and ammMgr

directly. This essentially reduce the gas consumption of one call.

Recommendation Remove the first transferFrom() call and transferFrom() from _from to
clearingHouseVault and ammMgr directly.

Status This issue has been addressed in this PR: 1195.

3.3 Missed Events and Error Handling in InsuranceFund

• ID: PVE-003

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: InsuranceFund.sol

• Category: Coding Practices [7]

• CWE subcategory: CWE-1041 [3]

Description

In the InsuranceFund contract, the owner adds and removes the quote tokens through the addToken()

and removeToken() functions with the quoteTokens array which keeps all the supported quote tokens.
However, we noticed that the error handling logic is missed in these functions. As shown in the
following code snippets, when we addToken() an existing quote token, the function simply returns
with no error code. Also, when we removeToken() a quote token which has not been added yet, the
function returns because of idx == -1 in line 887 with no error code again.

57 f unc t i on addToken (IERC20 _token) ex te rna l onlyOwner {
58 i f (! i sQuoteTokenEx i s t ed (_token)) {

14/40 PeckShield Audit Report #: 2020-46

https://github.com/perpetual-protocol/perp-monorepo/pull/1195

Public

59 quoteTokens . push (_token) ;
60 }
61 }

63 f unc t i on removeToken (IERC20 _token) ex te rna l onlyOwner {
64 int256 i d x = getToken Index (_token) ;
65 i f (i d x == −1) {
66 re tu rn ;
67 }

Listing 3.3: InsuranceFund. sol

We suggest to revert the transaction when those error cases happen. Moreover, since adding/re-
moving quote tokens are important updates in Perpetual Protocol, we suggest to emit events when
a new quote token is added or an existing quote token is removed.

Recommendation Revert the transaction when adding/removing quote tokens fail and emit
events when quote tokens are added/removed.

57 f unc t i on addToken (IERC20 _token) ex te rna l onlyOwner {
58 i f (! i sQuoteTokenEx i s t ed (_token)) {
59 quoteTokens . push (_token) ;
60 emit TokenAdded (address (_token) , quoteTokens . l ength − 1) ;
61 } e l s e {
62 r e ve r t ("token existed") ;
63 }
64 }

66 f unc t i on removeToken (IERC20 _token) ex te rna l onlyOwner {
67 int256 i d x = getToken Index (_token) ;
68 r equ i r e (i d x >= 0 , "token not existed") ;
69 . . .
70 emit TokenRemoved (address (_token)) ;

Listing 3.4: InsuranceFund. sol

Status This issue has been addressed in this PR: 1197.

3.4 Business Logic Error in
InsuranceFund::getTokenWithMaxValue()

• ID: PVE-004

• Severity: Medium

• Likelihood: High

• Impact: Low

• Target: InsuranceFund.sol

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

15/40 PeckShield Audit Report #: 2020-46

https://github.com/perpetual-protocol/perp-monorepo/pull/1197

Public

Description

In the InsuranceFund contract, the owner adds and removes the quote tokens through the addToken()

and removeToken() functions with the quoteTokens array which keeps all the supported quote tokens.
While removing a quote token, the tokens withheld are exchanged to a outputToken as shown in the
following code snippet. However, the business logic to choose the outputToken has some flaws such
that the smallest quoteToken cannot be selected correctly.

77 // exchange and transfer to the smallest quoteToken. if no more quoteToken , buy
protocol tokens

78 // TODO use curve or balancer fund token for pooling the fees will be less
painful

79 address outputToken = getTokenWithMaxValue (_token) ;
80 i f (outputToken == address (0)) {
81 outputToken = address (perpToken) ;
82 }
83 swapInput (_token , IERC20 (outputToken) , ba lanceOf (_token) , Decimal . z e r o ()) ;

Listing 3.5: InsuranceFund::removeToken()

As shown in the following code snippet, when numOfQuoteTokens <= 1, we have no choice but return
the first quote token or the zero address which fails over to the perpToken. When numOfQuoteTokens

>= 2, the for-loop in line 97 − 108 tends to quote each quote token based on the _denominatedToken

and get the maxValueToken. However, the range of i in line 97 simply skip the first and the last quote
token with no reason.

86 f unc t i on getTokenWithMaxValue (IERC20 _denominatedToken) i n t e r n a l view re tu rn s (
address) {

87 uint256 numOfQuoteTokens = quoteTokens . l ength ;
88 i f (numOfQuoteTokens == 0) {
89 re tu rn address (0) ;
90 }
91 i f (numOfQuoteTokens == 1) {
92 re tu rn address (quoteTokens [0]) ;
93 }

95 IERC20 maxValueToken ;
96 Decimal . d ec ima l memory valueOfMaxValueToken ;
97 f o r (uint256 i = 1 ; i < numOfQuoteTokens − 1 ; i++) {
98 IERC20 quoteToken = quoteTokens [i] ;
99 Decimal . d ec ima l memory quoteTokenValue = exchange . g e t I n p u tP r i c e (

100 quoteToken ,
101 _denominatedToken ,
102 ba lanceOf (quoteToken)
103) ;
104 i f (quoteTokenValue . cmp(valueOfMaxValueToken) > 0) {
105 maxValueToken = quoteToken ;
106 valueOfMaxValueToken = quoteTokenValue ;
107 }
108 }

16/40 PeckShield Audit Report #: 2020-46

Public

109 re tu rn address (maxValueToken) ;
110 }

Listing 3.6: InsuranceFund. sol

Based on the current implementation, getTokenWithMaxValue() returns address(0) when numOfQuoteTokens

== 2. If numOfQuoteTokens > 2, the maxValueToken in quoteTokens[] is returned but the quoteTokens[0]

quoteTokens[quoteTokens.length-1] are skipped. We believe that this is not what the business logic
was designed.

Recommendation Fix the range of i in the for-loop.

Status This issue has been addressed in this PR: 1203.

3.5 Business Logic Error in
RewardsDistribution::distributeRewards()

• ID: PVE-005

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: RewardsDistribution.sol

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

In the RewardsDistribution contract, the distributeRewards() function distributes perpToken to the
addresses in the distributions[] array. As shown in the code snippet below, _amount of perpToken

tokens are distributed in the for-loop which iterates the distributions[] array.
Within the for-loop, we notice that some sanity checks are performed in line 81. However,

the checks are not implemented correctly. In particular, distributions[i].destination != address(0)

prevents the rewards from being sent to zero addresses. And distributions[i].amount.toUint()!= 0

skips zero transfers. Both checks are reasonable.

69 f unc t i on d i s t r i b u t eR ewa r d s (Decimal . dec ima l memory _amount) o v e r r i d e pub l i c {
70 r equ i r e (_msgSender () == address (perpToken) , "caller is not PerpToken") ;
71 r equ i r e (
72 DecimalERC20 . ba lanceOf (perpToken , address (t h i s)) . t oU in t () >= _amount . t oU in t

() ,
73 "RewardsDistribution does not have enough PERP to distribute"
74) ;

76 // Iterate the array of distributions sending the configured amounts
77 // the size of the distributions array will be controlled by owner (DAO)
78 // owner should be aware of not making this array too large

17/40 PeckShield Audit Report #: 2020-46

https://github.com/perpetual-protocol/perp-monorepo/pull/1203

Public

79 Decimal . d ec ima l memory r ema inde r = _amount ;
80 f o r (uint256 i = 0 ; i < d i s t r i b u t i o n s . l ength ; i++) {
81 i f (d i s t r i b u t i o n s [i] . d e s t i n a t i o n != address (0) || d i s t r i b u t i o n s [i] . amount . t oU in t ()

!= 0) {
82 r ema inde r = rema inde r . subD (d i s t r i b u t i o n s [i] . amount) ;

84 // Transfer the PERP
85 DecimalERC20 . t r a n s f e r (perpToken , d i s t r i b u t i o n s [i] . d e s t i n a t i o n ,

d i s t r i b u t i o n s [i] . amount) ;

Listing 3.7: RewardsDistribution . sol

The buggy part is that the two checks are OR’ed instead of AND’ed in line 81. It means the rewards
could be distributed to a zero address if the amount is non-zero. Also, zero transfers are allowed if
the destination address is not a zero address.

Recommendation Fix the if statement in line 81.
69 f unc t i on d i s t r i b u t eR ewa r d s (Decimal . dec ima l memory _amount) o v e r r i d e pub l i c {
70 r equ i r e (_msgSender () == address (perpToken) , "caller is not PerpToken") ;
71 r equ i r e (
72 DecimalERC20 . ba lanceOf (perpToken , address (t h i s)) . t oU in t () >= _amount . t oU in t

() ,
73 "RewardsDistribution does not have enough PERP to distribute"
74) ;

76 // Iterate the array of distributions sending the configured amounts
77 // the size of the distributions array will be controlled by owner (dao)
78 // owner should be aware of not making this array too large
79 Decimal . d ec ima l memory r ema inde r = _amount ;
80 f o r (uint256 i = 0 ; i < d i s t r i b u t i o n s . l ength ; i++) {
81 i f (d i s t r i b u t i o n s [i] . d e s t i n a t i o n != address (0) && d i s t r i b u t i o n s [i] . amount . t oU in t ()

!= 0) {
82 r ema inde r = rema inde r . subD (d i s t r i b u t i o n s [i] . amount) ;

84 // Transfer the PERP
85 DecimalERC20 . t r a n s f e r (perpToken , d i s t r i b u t i o n s [i] . d e s t i n a t i o n ,

d i s t r i b u t i o n s [i] . amount) ;

Listing 3.8: RewardsDistribution . sol

Status This issue has been addressed in this PR: 1195.

18/40 PeckShield Audit Report #: 2020-46

https://github.com/perpetual-protocol/perp-monorepo/pull/1195

Public

3.6 Gas Optimization in
RewardsDistribution::removeRewardsDistribution()

• ID: PVE-006

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: RewardsDistribution.sol

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

As mentioned in Section 3.5, the distributions[] array keeps the addresses and amounts for reward
distribution. Meanwhile, it should be carefully maintained by the privileged user (i.e., the user
who can pass the onlyOwner check). While reviewing the removeRewardsDistribution() function that
removes the element indexed by _index from the distributions[] array, we notice that there’s one
trivial trick to reduce the gas consumption. Especially, when we have a huge distributions[] array,
the improvement saves a lot of gas!

121 f unc t i on r emoveRewa rd sD i s t r i bu t i on (uint256 _index) ex te rna l onlyOwner {
122 r equ i r e (_index <= d i s t r i b u t i o n s . l ength − 1 , "index out of bounds") ;

124 // shift distributions indexes across
125 f o r (uint256 i = _index ; i < d i s t r i b u t i o n s . l ength − 1 ; i++) {
126 d i s t r i b u t i o n s [i] = d i s t r i b u t i o n s [i + 1] ;
127 }
128 d i s t r i b u t i o n s . pop () ;

130 // Since this function must shift all later entries down to fill the
131 // gap from the one it removed , it could in principle consume an
132 // unbounded amount of gas. However , the number of entries will
133 // presumably always be very low.
134 }

Listing 3.9: RewardsDistribution . sol

The trick is that we could simply replace the element to be removed with the last element in the
array and pop() the last element out. This reduces a lot of gas if you need to walk through a huge
array and replace each element with the next element as what the current implementation is (line
125 − 127).

Recommendation Replace the element to be removed with the last element and pop() the last
element out.

121 f unc t i on r emoveRewa rd sD i s t r i bu t i on (uint256 _index) ex te rna l onlyOwner {
122 r equ i r e (_index <= d i s t r i b u t i o n s . l ength − 1 , "index out of bounds") ;

19/40 PeckShield Audit Report #: 2020-46

Public

124 d i s t r i b u t i o n s [_index] = d i s t r i b u t i o n s [d i s t r i b u t i o n s . l ength − 1] ;
125 d i s t r i b u t i o n s . pop () ;
126 }

Listing 3.10: RewardsDistribution . sol

Status This issue has been addressed in this PR: 1195.

3.7 Missed initializer Modifiers

• ID: PVE-007

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: InflationMonitor.sol, SupplySchedule

.sol

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

In the current prototype design, the initialize() function plays an important role to perform what
the constructor should have done in an easier way. Since the initialize() function is typically public

, a common practice is applying the initializer modifier on it, which is part of the Initializable

contract provided by OpenZeppelin. With the help of the initializer modifier, bad actors have no
chance to call the critical initialize() function again.

However, while reviewing all initialize() functions in Perpetual Protocol, we identified two cases
that might have problems due to the missed initializer modifiers. As shown in the code snippets
bellow, the InflationMonitor contract has a public initialize() (without the modifier) to initialize
the perpToken and the shutdownThreshold, which we certainly do not expect a bad actor to set it
again. The SupplySchedule contract also has a few important system parameters (initialized in the
initialize() without the initializer modifier), which opens a big attack surface.

37 f unc t i on i n i t i a l i z e (PerpToken _perpToken) pub l i c {
38 __Ownable_init () ;

40 perpToken = _perpToken ;
41 shutdownThresho ld = Decimal . one () . d i v S c a l a r (10) ;
42 }

Listing 3.11: InflationMonitor . sol

51 f unc t i on i n i t i a l i z e (PerpToken _perpToken , uint256 _in f l a t i o nRa t e , uint256 _decayRate
, uint256 _mintDurat ion)

52 pub l i c
53 {
54 __Ownable_init () ;

20/40 PeckShield Audit Report #: 2020-46

https://github.com/perpetual-protocol/perp-monorepo/pull/1195

Public

56 perpToken = _perpToken ;
57 i n f l a t i o n R a t e = Decimal . dec ima l (_ i n f l a t i o nRa t e) ;
58 mintDura t i on = _mintDurat ion ;
59 decayRate = Decimal . d ec ima l (_decayRate) ;
60 }

Listing 3.12: SupplySchedule. sol

Fortunately, the __Ownable_init() function invoked by both initialize() functions has the initializer
modifier applied, which prevents bad actors from re-entering the initialize() functions. We still
suggest to explicitly use the initializer modifier on each initialize() function.

Recommendation Add the initializer modifier to the initialize() functions.

Status This issue has been addressed in this PR: 1197.

3.8 Reentrancy Risk in ClearingHouse::settlePosition()

• ID: PVE-008

• Severity: High

• Likelihood: Medium

• Impact: High

• Target: ClearingHouse.sol

• Category: Security Features [6]

• CWE subcategory: CWE-287 [4]

Description

In the ClearingHouse contract, the addMargin() allows a trader to add margin to her position while
the settlePosition() function allows her to settle the position. While reviewing the adding/settling
mechanism, we identified a reentrancy risk such that a bad actor could settlePosition() a position
but leave a batch of quote assets inside the ClearingHouse without book-keeping records. And, that
batch of unknown quote asset is actually the margin addMargin()’ed into the position in the same
transaction.

The problem is essentially caused by doing settlePosition() inside the addMargin() call due to
the support of ERC777 (or similar tokens which support a callback mechanism) [16]. Specifically,
as shown in the code snippet below, addMargin() performs transferFrom() (line 217) to collect the
quote assets from the trader into the ClearingVault. If that quote asset is an ERC777 token, the
bad actor could intercept the control flow before the asset flows into the clearingHouseVault.

211 f unc t i on addMargin (Amm _amm, Decimal . d ec ima l c a l l d a t a _addedMargin) ex te rna l
whenNotPaused () nonReent rant () {

212 // update margin part in personal position
213 address t r a d e r = _msgSender () ;
214 updateMarg in (_amm, t r ad e r , MixedDecimal . f romDecimal (_addedMargin)) ;

21/40 PeckShield Audit Report #: 2020-46

https://github.com/perpetual-protocol/perp-monorepo/pull/1197

Public

216 // transfer token from trader
217 DecimalERC20 . t r an s f e rF r om (_amm. quoteAs se t () , t r ad e r , address (c l e a r i n gHou s eVau l t)

, _addedMargin) ;

219 // emit event
220 emit MarginAdded (t r ad e r , address (_amm) , _addedMargin . t oU in t ()) ;
221 }

Listing 3.13: ClearingHouse. sol

Now, settlePosition() deletes all the book-keeping records about the position which is addMargin

()’ed earlier (line 258).

248 f unc t i on s e t t l e P o s i t i o n (Amm _amm) ex te rna l {
249 // check condition
250 requireAmm (_amm) ;
251 r equ i r e (!_amm. open () , "amm is open") ;

253 address t r a d e r = _msgSender () ;
254 Po s i t i o n memory pos = g e tP o s i t i o n (_amm, t r a d e r) ;
255 r e q u i r e P o s i t i o n S i z e (pos . s i z e) ;

257 // update position
258 d e l e t e P o s i t i o n (_amm, t r a d e r) ;

Listing 3.14: ClearingHouse :: settlePosition ()

Later on, the settledValue amount of the quote assets is withdrawn by the trader (a.k.a. the
bad actor) in line 282. When the code flow goes back to addMargin()’s transferFrom() call, the same
amount of quote assets is transferred into the ClearingHouseVault. But, there’s no record for that
batch of assets.

279 // transfer token based on settledValue
280 i f (s e t t l e dV a l u e . t oU in t () != 0) {
281 IERC20 quoteAs se t = _amm. quoteAs se t () ;
282 c l e a r i n gHou s eVau l t . withdraw (quoteAsset , t r ad e r , s e t t l e dV a l u e) ;
283 }

Listing 3.15: ClearingHouse :: settlePosition ()

Recommendation Add the necessary reentrancy guard to settlePosition().

Status This issue has been addressed by adding reentrancy guard to settlePosition() in this
PR: 1270.

22/40 PeckShield Audit Report #: 2020-46

https://github.com/perpetual-protocol/perp-monorepo/pull/1270

Public

3.9 Missed Sanity Checks Against _amm.open in
ClearingHouse

• ID: PVE-009

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: ClearingHouse.sol

• Category: Coding Practices [7]

• CWE subcategory: CWE-1041 [3]

Description

While reviewing the ClearingHouse contract, we notice that the _amm variable is used for the interac-
tions with a specific vAMM. Many of the use cases have sanity checks on the _amm, a few cases can
still be improved.

Case I The openPosition() fails to ensure the _amm is in the open state (i.e., _amm.open == true).
When the execution goes into implOpenPosition() and eventually invokes _amm.swapInputWithMinBaseAsset
(), the transaction would be reverted due to the onlyOpen() modifier.

297 f unc t i on openPo s i t i o n (
298 Amm _amm,
299 S ide _side ,
300 Decimal . d ec ima l c a l l d a t a _quoteAssetAmount ,
301 Decimal . d ec ima l c a l l d a t a _leverage ,
302 Decimal . d ec ima l c a l l d a t a _minBaseAssetAmount
303) ex te rna l whenNotPaused () nonReent rant () {
304 // check conditions
305 requireAmm (_amm) ;
306 r e qu i r eNonZe ro I npu t (_quoteAssetAmount) ;
307 r e qu i r eNonZe ro I npu t (_ leve rage) ;
308 r equ i r eEnoughMarg inRat i o (MixedDecimal . f romDecimal (Decimal . one ()) . divD (_leve rage)

) ;

310 // update position
311 address t r a d e r = _msgSender () ;
312 Pos i t i o nRe sp memory po s i t i o nR e s p = imp lOpenPos i t i on (
313 Po s i t i o nA r g s (_amm, t r ad e r , _side , _quoteAssetAmount . mulD(_leve rage) ,

_leverage , _minBaseAssetAmount)
314) ;

Listing 3.16: ClearingHouse. sol

161 f unc t i on swapInputWithMinBaseAsset (
162 Di r _dir ,
163 Decimal . d ec ima l c a l l d a t a _quoteAssetAmount ,
164 Decimal . d ec ima l c a l l d a t a _minValueOfBaseAssetAmount

23/40 PeckShield Audit Report #: 2020-46

Public

165) ex te rna l onlyOpen on l yCoun t e rPa r t y r e tu rn s (Decimal . d ec ima l memory) {

Listing 3.17: Amm.sol

Case II Similar to the previous case, both closePosition() and liquidate() hit the onlyOpen()

function _amm.forceSwapOutput() without checking _amm.open() in the first place, which would be a
waste of gas.

352 f unc t i on c l o s e P o s i t i o n (Amm _amm) ex te rna l whenNotPaused () nonReent rant () {
353 // check conditions
354 requireAmm (_amm) ;

356 // update position
357 address t r a d e r = _msgSender () ;
358 Pos i t i o nRe sp memory po s i t i o nR e s p = i n t e r n a l C l o s e P o s i t i o n (_amm, t r a d e r) ;

Listing 3.18: ClearingHouse. sol

392 f unc t i on l i q u i d a t e (Amm _amm, address _trader) ex te rna l nonReent rant () {
393 // check conditions
394 requireAmm (_amm) ;
395 r equ i r e (
396 ge tMarg inRat i o (_amm, _trader) . subD (ma intenanceMarg inRat io) . t o I n t () < 0 ,
397 "Margin ratio is larger than min requirement"
398) ;
399 address l i q u i d a t o r = _msgSender () ;
400 Po s i t i o n memory l i q u i d a t o r P o s = ge tUnad j u s t e dPo s i t i o n (_amm, l i q u i d a t o r) ;
401 // TODO have a short message
402 r equ i r e (l i q u i d a t o r P o s . blockNumber != _blockNumber () , "can’t open and liquidate

in the same block") ;

404 // update position
405 Pos i t i o nRe sp memory po s i t i o nR e s p = i n t e r n a l C l o s e P o s i t i o n (_amm, _trader) ;

Listing 3.19: ClearingHouse. sol

222 f unc t i on forceSwapOutput (D i r _dir , Decimal . d ec ima l c a l l d a t a _baseAssetAmount)
223 ex te rna l
224 onlyOpen
225 on l yCoun t e rPa r t y
226 r e tu rn s (Decimal . d ec ima l memory)
227 {
228 re tu rn implSwapOutput (_dir , _baseAssetAmount , t rue) ;
229 }

Listing 3.20: Amm.sol

Case III The same improvement is also applicable to payFunding(). When it reaches _amm.

settleFunding(), the unchecked _amm.open reverts the transaction which could have been reverted in
the first line of payFunding().

24/40 PeckShield Audit Report #: 2020-46

Public

459 f unc t i on payFunding (Amm _amm) ex te rna l {
460 requireAmm (_amm) ;

462 // must copy the baseAssetDeltaThisFundingPeriod
463 SignedDec ima l . s i gnedDec ima l memory ba s eAs s e tDe l t aTh i sFund i ngPe r i od =

SignedDec ima l . s i gnedDec ima l (
464 _amm. ba s eAs s e tDe l t aTh i sFund i ngPe r i od ()
465) ;

467 SignedDec ima l . s i gnedDec ima l memory premiumFract ion = _amm. s e t t l e F u n d i n g () ;

Listing 3.21: ClearingHouse. sol

236 f unc t i on s e t t l e F u n d i n g () ex te rna l onlyOpen r e tu rn s (S ignedDec ima l . s i gnedDec ima l
memory) {

237 r equ i r e (_blockTimestamp () >= nextFundingTime , "settle funding too early") ;

239 // premium = twapMarketPrice - twapIndexPrice
240 // timeFraction = fundingPeriod (1 hour) / 1 day
241 // premiumFraction = premium * timeFraction

Listing 3.22: Amm.sol

Recommendation Ensure _amm.open == true in the beginning of ClearingHouse function.

Status This issue has been addressed by refactoring the requireAmm() function with the _open

parameter to validate the state of the vAMM in this PR: 1270.

3.10 Configurable Constant Variable in Amm

• ID: PVE-010

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Amm.sol

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

The fundingPeriod is an important variable for the Amm to update the funding rate. As shown in the
code snippet below, the settleFunding() external function allows anyone to update the funding rate
if the current block timestamp is beyond the planned time (i.e., nextFundingTime). The new funding
rate is calculated based on the premium and the timeFraction as indicated in the comments (lines
239−241). Here, we notice that the timeFraction is derived by a number of seconds (fundingPeriod)
divided by a constant, 86, 400 (1 days). The idea is that we want to gradually kick in the difference
between twapMarketPrice and twapIndexPrice. However, the fundingPeriod is not a constant due to

25/40 PeckShield Audit Report #: 2020-46

https://github.com/perpetual-protocol/perp-monorepo/pull/1270

Public

the fact that the initialize() function can set it as any given value. This may lead to unexpected
side effects. For example, if it’s greater than 1 days, the premiumFraction would be greater than the
premium itself.

236 f unc t i on s e t t l e F u n d i n g () ex te rna l onlyOpen r e tu rn s (S ignedDec ima l . s i gnedDec ima l
memory) {

237 r equ i r e (_blockTimestamp () >= nextFundingTime , "settle funding too early") ;

239 // premium = twapMarketPrice - twapIndexPrice
240 // timeFraction = fundingPeriod (1 hour) / 1 day
241 // premiumFraction = premium * timeFraction
242 Decimal . d ec ima l memory u n d e r l y i n gP r i c e = g e tUnd e r l y i n gP r i c e () ;
243 SignedDec ima l . s i gnedDec ima l memory premium = MixedDecimal . f romDecimal (

getTwapPr ice (s p o tP r i c eTwap I n t e r v a l)) . subD (
244 u n d e r l y i n gP r i c e
245) ;
246 SignedDec ima l . s i gnedDec ima l memory premiumFract ion = premium . mu lSca l a r (

f u nd i n gPe r i o d) . d i v S c a l a r (int256 (1 days)) ;

248 // update funding rate = premiumFraction / twapIndexPrice
249 updateFund ingRate (premiumFract ion . divD (u n d e r l y i n gP r i c e)) ;

Listing 3.23: Amm.sol

140 quo t eAs s e tRe s e r v e = Decimal . dec ima l (_quoteAsse tRese rve) ;
141 ba s eAs s e tRe s e r v e = Decimal . dec ima l (_baseAsse tRese rve) ;
142 t r a d e L im i tR a t i o = Decimal . dec ima l (_t r adeL im i tRa t i o) ;
143 f l u c t u a t i o n = Decimal . d ec ima l (_ f l u c t u a t i o n) ;
144 f u nd i n gPe r i o d = _fund ingPer iod ;
145 f u n d i n gBu f f e rP e r i o d = _fund ingPer iod . d i v (2) ;

Listing 3.24: Amm.sol:: initialize ()

Recommendation Set fundingPeriod as a constant variable (i.e., 3600).

Status After discussing with the team, they confirmed this issue and decided to leave as is.

26/40 PeckShield Audit Report #: 2020-46

Public

3.11 Better Handling of Privilege Transfers

• ID: PVE-011

• Severity: Informational

• Likelihood: Low

• Impact: N/A

• Targets: Ownable.sol

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

Perpetual Protocol implements a rather basic access control mechanism that allows a privileged
account, i.e., _owner, to be granted exclusive access to typically sensitive functions (e.g., adding/re-
moving a quote token). Because of the privileged access and the implications of these sensitive
functions, the _owner account is essential for the protocol-level safety and operation. In the follow-
ing, we elaborate with the _owner account.

Within the governing contract Ownable, a specific function, i.e., transferOwnership(address newOwner

), is provided to allow for possible _owner updates. However, current implementation achieves its goal
within a single transaction. This is reasonable under the assumption that the newOwner parameter
is always correctly provided. However, in the unlikely situation, when an incorrect newOwner is pro-
vided, the contract ownership may be lost forever, which would be devastating for Perpetual Protocol
operation and maintenance.

72 f unc t i on t r a n s f e rOwne r s h i p (address newOwner) pub l i c v i r t u a l onlyOwner {
73 r equ i r e (newOwner != address (0) , "Ownable: new owner is the zero address") ;
74 emit Owne r sh i pTran s f e r r ed (_owner , newOwner) ;
75 _owner = newOwner ;
76 }

Listing 3.25: Ownabe.sol

As a common best practice, instead of achieving the owner update within a single transaction,
it is suggested to split the operation into two steps. The first step initiates the owner update intent
and the second step accepts and materializes the update. Both steps should be executed in two
separate transactions. By doing so, it can greatly alleviate the concern of accidentally transferring
the contract ownership to an uncontrolled address. In other words, this two-step procedure ensures
that an owner public key cannot be nominated unless there is an entity that has the corresponding
private key. This is explicitly designed to prevent unintentional errors in the owner transfer process.

Recommendation Implement a two-step approach for owner update (or transfer): setOwner()

and acceptOwner().

72 f unc t i on setOwner (address newOwner) pub l i c onlyOwner {
73 r equ i r e (newOwner != address (0) , "Ownable: zero address") ;

27/40 PeckShield Audit Report #: 2020-46

Public

74 r equ i r e (newOwner != _owner , "Ownable: same as original") ;
75 r equ i r e (newOwner != _candidate , "Ownable: same as candidate") ;
76 _candidate = newOwner ;
77 }

79 f unc t i on updateOwner () pub l i c {
80 r equ i r e (_candidate != address (0) , "Ownable: candidate is zero address") ;
81 r equ i r e (_candidate == _msgSender () , "Ownable: not the new owner") ;

83 emit Owne r sh i pTran s f e r r ed (_owner , _candidate) ;
84 _owner = _candidate ;
85 _candidate = address (0) ;
86 }

Listing 3.26: Ownabe.sol

Status This issue has been addressed by implementing the two-step approach in this PR: 1266.

3.12 Incompatibility With approve/transferFrom Race
Prevention Tokens

• ID: PVE-012

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Targets: InsuranceFund.sol

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

In some cases, the InsuranceFund contract needs to deal with exchange services for swapping a
token to another. For example, while removing a quote token, the token balance withheld would
be exchanged to an existing quote token or the perp token as implemented in the removeToken()

function. The underlying internal function to swap the tokens (e.g., swapInput()) needs to approve()

the exchange to spend certain amount of the token balance of the InsuranceFund contract, which is
a common practice of DEXs.

156 f unc t i on swapInput (
157 IERC20 inputToken ,
158 IERC20 outputToken ,
159 Decimal . d ec ima l memory inputTokenSo ld ,
160 Decimal . d ec ima l memory minOutputTokenBought
161) i n t e r n a l r e tu rn s (Decimal . d ec ima l memory r e c e i v e d) {
162 i f (inputTokenSo ld . t oU in t () == 0) {
163 re tu rn Decimal . z e r o () ;
164 }

28/40 PeckShield Audit Report #: 2020-46

https://github.com/perpetual-protocol/perp-monorepo/pull/1266

Public

165 DecimalERC20 . approve (inputToken , address (exchange) , inputTokenSo ld) ;
166 r e c e i v e d = exchange . swapInput (inputToken , outputToken , inputTokenSo ld ,

minOutputTokenBought) ;
167 r equ i r e (r e c e i v e d . t oU in t () > 0 , "Exchange swap error") ;
168 }

Listing 3.27: InsuranceFund. sol

However, for dealing with the approve/transferFrom race condition issue [2], many ERC20 tokens
implement their approve() handlers as follows:

1 f unc t i on approve (address guy , u in t wad) pub l i c s t o ppab l e r e tu rn s (bool) {
2 r equ i r e (_approva l s [msg . sender] [guy] == 0 || wad == 0) ; //take care of re -approve.
3 re tu rn super . approve (guy , wad) ;
4 }

Listing 3.28: approve/transferFrom Race Prevention Token

As a result, if the current implementation of swapInput() is about to exchange such tokens, the
approve() call in line 165 simply reverts. We suggest to always approve(0) before approve()’ing the
real amount to facilitate different approve() implementations.

Recommendation Set the approval to 0 before the real approve() call.

Status This issue has been addressed by refactoring the DecimalERC20 utils in this PR: 1263.

3.13 Wrong Comments in
StakingReserve::getUnstakableBalance()

• ID: PVE-013

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Targets: StakingReserve.sol

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

The getUnstakableBalance() retrieves the lockedBalance at the one after the next epoch as shown in
the code below. However, the comments in line 366 suggests the lockedBalance at the next epoch
which is inconsistent to the implementation.

366 // unstakable = lockedBalance@NextEpoch
367 f unc t i on ge tUns t akab l eBa l ance (address _staker) pub l i c view re tu rn s (Decimal . d ec ima l

memory) {
368 re tu rn getLockedBa lance (_staker , nex tEpoch Index () . add (1)) . l o c k ed ;

29/40 PeckShield Audit Report #: 2020-46

https://github.com/perpetual-protocol/perp-monorepo/pull/1263

Public

369 }

Listing 3.29: StakingReserve. sol

Recommendation Fix the comments as follows:

366 // unstakable = lockedBalance@NextEpoch +1
367 f unc t i on ge tUns t akab l eBa l ance (address _staker) pub l i c view re tu rn s (Decimal . d ec ima l

memory) {
368 re tu rn getLockedBa lance (_staker , nex tEpoch Index () . add (1)) . l o c k ed ;
369 }

Listing 3.30: StakingReserve. sol

Status This issue has been addressed by revising the comments in this PR: 1260.

3.14 Business Logic Error in
StakingReserve::getLockedBalance()

• ID: PVE-014

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Targets: StakingReserve.sol

• Category: Business Logics [8]

• CWE subcategory: CWE-841 [5]

Description

In the StakingReserve contract, stakers can use the stake() and unstake() functions to increase or
decrease the staking. Specifically, the stakeBalance.lockedBalanceMap[] array keeps the locked amount
and the time-weighted locked amount for each staker in different epoch. While reviewing the staking
mechanism, we identified a business logic error in the public view function getLockedBalance().

As shown in the following code snippet, the getLockedBalance() function walks through the
stakeBalance.lockedBalanceMap[] array to find out the closest previous lockedBalance. However, in
line 378, the index cannot reach 0, which means if the target lockedBalance is at stakeBalance

.lockedBalanceMap[0], there’s no way to find it out. As a result, zero locked amount and zero
time-weighted locked amount would be returned in line 384.

373 f unc t i on getLockedBa lance (address _staker , uint256 _epochIndex) pub l i c view re tu rn s
(LockedBalance memory) {

374 StakeBa lance storage s t ak eBa l anc e = stakeBalanceMap [_staker] ;
375 i f (0 == _epochIndex) {
376 re tu rn s t ak eBa l anc e . lockedBalanceMap [_epochIndex] ;
377 }
378 f o r (uint256 i = _epochIndex ; i > 0 ; i −−) {

30/40 PeckShield Audit Report #: 2020-46

https://github.com/perpetual-protocol/perp-monorepo/pull/1260

Public

379 LockedBalance memory l o c k edBa l anc e = s takeBa l anc e . lockedBalanceMap [i] ;
380 i f (l o ck edBa l anc e . e x i s t) {
381 re tu rn l o c k edBa l anc e ;
382 }
383 }
384 re tu rn LockedBalance (f a l s e , Decimal . z e r o () , Decimal . z e r o ()) ;
385 }

Listing 3.31: StakingReserve. sol

If a staker is about to unstake() some assets but the closest existing lockedBalance is at index 0
(as mentioned above), her assets would be locked eternally.

Recommendation Take care the stakeBalance.lockedBalanceMap[0] case.
373 f unc t i on getLockedBa lance (address _staker , uint256 _epochIndex) pub l i c view re tu rn s

(LockedBalance memory) {
374 StakeBa lance storage s t ak eBa l anc e = stakeBalanceMap [_staker] ;
375 i f (0 == _epochIndex) {
376 re tu rn s t ak eBa l anc e . lockedBalanceMap [_epochIndex] ;
377 }
378 f o r (uint256 i = _epochIndex ; i > 0 ; i −−) {
379 LockedBalance memory l o c k edBa l anc e = s takeBa l anc e . lockedBalanceMap [i] ;
380 i f (l o ck edBa l anc e . e x i s t) {
381 re tu rn l o c k edBa l anc e ;
382 }
383 }
384 i f (i == 0) {
385 LockedBalance memory l o c k edBa l anc e = s takeBa l anc e . lockedBalanceMap [i] ;
386 i f (l o ck edBa l anc e . e x i s t) {
387 re tu rn l o c k edBa l anc e ;
388 }
389 }
390 re tu rn LockedBalance (f a l s e , Decimal . z e r o () , Decimal . z e r o ()) ;
391 }

Listing 3.32: StakingReserve. sol

Status This issue has been addressed by traversing the stakeBalance.lockedBalanceMap[] until
i=0 in this PR: 1260.

3.15 Other Suggestions

Due to the fact that compiler upgrades might bring unexpected compatibility or inter-version con-
sistencies, it is always suggested to use fixed compiler versions whenever possible. As an example,
we highly encourage to explicitly indicate the Solidity compiler version, e.g., pragma solidity 0.6.0;

instead of pragma solidity >=0.6.0;.
Moreover, we strongly suggest not to use experimental Solidity features or third-party unaudited

libraries. If necessary, refactor current code base to only use stable features or trusted libraries.

31/40 PeckShield Audit Report #: 2020-46

https://github.com/perpetual-protocol/perp-monorepo/pull/1260

Public

Last but not least, it is always important to develop necessary risk-control mechanisms and make
contingency plans, which may need to be exercised before the mainnet deployment. The risk-control
mechanisms need to kick in at the very moment when the contracts are being deployed in mainnet.

32/40 PeckShield Audit Report #: 2020-46

Public

4 | Conclusion

In this audit, we thoroughly analyzed the Perpetual Protocol design and implementation. The system
presents a unique offering of perpetual contract trading of various digital assets and we are impressed
by the design and implementation. The current code base is well organized and those identified issues
are promptly confirmed and fixed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

33/40 PeckShield Audit Report #: 2020-46

Public

5 | Appendix

5.1 Basic Coding Bugs

5.1.1 Constructor Mismatch

• Description: Whether the contract name and its constructor are not identical to each other.

• Result: Not found

• Severity: Critical

5.1.2 Ownership Takeover

• Description: Whether the set owner function is not protected.

• Result: Not found

• Severity: Critical

5.1.3 Redundant Fallback Function

• Description: Whether the contract has a redundant fallback function.

• Result: Not found

• Severity: Critical

5.1.4 Overflows & Underflows

• Description: Whether the contract has general overflow or underflow vulnerabilities [11, 12,
13, 14, 17].

• Result: Not found

• Severity: Critical

34/40 PeckShield Audit Report #: 2020-46

Public

5.1.5 Reentrancy

• Description: Reentrancy [18] is an issue when code can call back into your contract and change
state, such as withdrawing ETHs.

• Result: Not found

• Severity: Critical

5.1.6 Money-Giving Bug

• Description: Whether the contract returns funds to an arbitrary address.

• Result: Not found

• Severity: High

5.1.7 Blackhole

• Description: Whether the contract locks ETH indefinitely: merely in without out.

• Result: Not found

• Severity: High

5.1.8 Unauthorized Self-Destruct

• Description: Whether the contract can be killed by any arbitrary address.

• Result: Not found

• Severity: Medium

5.1.9 Revert DoS

• Description: Whether the contract is vulnerable to DoS attack because of unexpected revert.

• Result: Not found

• Severity: Medium

35/40 PeckShield Audit Report #: 2020-46

Public

5.1.10 Unchecked External Call

• Description: Whether the contract has any external call without checking the return value.

• Result: Not found

• Severity: Medium

5.1.11 Gasless Send

• Description: Whether the contract is vulnerable to gasless send.

• Result: Not found

• Severity: Medium

5.1.12 Send Instead Of Transfer

• Description: Whether the contract uses send instead of transfer.

• Result: Not found

• Severity: Medium

5.1.13 Costly Loop

• Description: Whether the contract has any costly loop which may lead to Out-Of-Gas excep-
tion.

• Result: Not found

• Severity: Medium

5.1.14 (Unsafe) Use Of Untrusted Libraries

• Description: Whether the contract use any suspicious libraries.

• Result: Not found

• Severity: Medium

36/40 PeckShield Audit Report #: 2020-46

Public

5.1.15 (Unsafe) Use Of Predictable Variables

• Description: Whether the contract contains any randomness variable, but its value can be
predicated.

• Result: Not found

• Severity: Medium

5.1.16 Transaction Ordering Dependence

• Description: Whether the final state of the contract depends on the order of the transactions.

• Result: Not found

• Severity: Medium

5.1.17 Deprecated Uses

• Description: Whether the contract use the deprecated tx.origin to perform the authorization.

• Result: Not found

• Severity: Medium

5.2 Semantic Consistency Checks

• Description: Whether the semantic of the white paper is different from the implementation of
the contract.

• Result: Not found

• Severity: Critical

5.3 Additional Recommendations

5.3.1 Avoid Use of Variadic Byte Array

• Description: Use fixed-size byte array is better than that of byte[], as the latter is a waste of
space.

• Result: Not found

• Severity: Low

37/40 PeckShield Audit Report #: 2020-46

Public

5.3.2 Make Visibility Level Explicit

• Description: Assign explicit visibility specifiers for functions and state variables.

• Result: Not found

• Severity: Low

5.3.3 Make Type Inference Explicit

• Description: Do not use keyword var to specify the type, i.e., it asks the compiler to deduce
the type, which is not safe especially in a loop.

• Result: Not found

• Severity: Low

5.3.4 Adhere To Function Declaration Strictly

• Description: Solidity compiler (version 0.4.23) enforces strict ABI length checks for return data
from calls() [1], which may break the the execution if the function implementation does NOT
follow its declaration (e.g., no return in implementing transfer() of ERC20 tokens).

• Result: Not found

• Severity: Low

38/40 PeckShield Audit Report #: 2020-46

Public

References

[1] axic. Enforcing ABI length checks for return data from calls can be breaking. https://github.

com/ethereum/solidity/issues/4116.

[2] HaleTom. Resolution on the EIP20 API Approve / TransferFrom multiple withdrawal attack.

https://github.com/ethereum/EIPs/issues/738.

[3] MITRE. CWE-1041: Use of Redundant Code. https://cwe.mitre.org/data/definitions/1041.

html.

[4] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[5] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[6] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[7] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[8] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[9] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

39/40 PeckShield Audit Report #: 2020-46

https://github.com/ethereum/solidity/issues/4116
https://github.com/ethereum/solidity/issues/4116
https://github.com/ethereum/EIPs/issues/738
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html

Public

[10] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[11] PeckShield. ALERT: New batchOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-

10299). https://www.peckshield.com/2018/04/22/batchOverflow/.

[12] PeckShield. New burnOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

11239). https://www.peckshield.com/2018/05/18/burnOverflow/.

[13] PeckShield. New multiOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

10706). https://www.peckshield.com/2018/05/10/multiOverflow/.

[14] PeckShield. New proxyOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-10376).

https://www.peckshield.com/2018/04/25/proxyOverflow/.

[15] PeckShield. PeckShield Inc. https://www.peckshield.com.

[16] PeckShield. Uniswap/Lendf.Me Hacks: Root Cause and Loss Analysis. https://blog.peckshield.

com/2020/04/19/erc777.

[17] PeckShield. Your Tokens Are Mine: A Suspicious Scam Token in A Top Exchange. https:

//www.peckshield.com/2018/04/28/transferFlaw/.

[18] Solidity. Warnings of Expressions and Control Structures. http://solidity.readthedocs.io/en/

develop/control-structures.html.

40/40 PeckShield Audit Report #: 2020-46

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com/2018/04/22/batchOverflow/
https://www.peckshield.com/2018/05/18/burnOverflow/
https://www.peckshield.com/2018/05/10/multiOverflow/
https://www.peckshield.com/2018/04/25/proxyOverflow/
https://www.peckshield.com
https://blog.peckshield.com/2020/04/19/erc777
https://blog.peckshield.com/2020/04/19/erc777
https://www.peckshield.com/2018/04/28/transferFlaw/
https://www.peckshield.com/2018/04/28/transferFlaw/
http://solidity.readthedocs.io/en/develop/control-structures.html
http://solidity.readthedocs.io/en/develop/control-structures.html

	Introduction
	About Perpetual Protocol
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Incompatibility With Deflationary Tokens in ClearingHouse::addMargin()
	Redundant ERC20 Transfers in ClearingHouse::transferFee()
	Missed Events and Error Handling in InsuranceFund
	Business Logic Error in InsuranceFund::getTokenWithMaxValue()
	Business Logic Error in RewardsDistribution::distributeRewards()
	Gas Optimization in RewardsDistribution::removeRewardsDistribution()
	Missed initializer Modifiers
	Reentrancy Risk in ClearingHouse::settlePosition()
	Missed Sanity Checks Against _amm.open in ClearingHouse
	Configurable Constant Variable in Amm
	Better Handling of Privilege Transfers
	Incompatibility With approve/transferFrom Race Prevention Tokens
	Wrong Comments in StakingReserve::getUnstakableBalance()
	Business Logic Error in StakingReserve::getLockedBalance()
	Other Suggestions

	Conclusion
	Appendix
	Basic Coding Bugs
	Constructor Mismatch
	Ownership Takeover
	Redundant Fallback Function
	Overflows & Underflows
	Reentrancy
	Money-Giving Bug
	Blackhole
	Unauthorized Self-Destruct
	Revert DoS
	Unchecked External Call
	Gasless Send
	Send Instead Of Transfer
	Costly Loop
	(Unsafe) Use Of Untrusted Libraries
	(Unsafe) Use Of Predictable Variables
	Transaction Ordering Dependence
	Deprecated Uses

	Semantic Consistency Checks
	Additional Recommendations
	Avoid Use of Variadic Byte Array
	Make Visibility Level Explicit
	Make Type Inference Explicit
	Adhere To Function Declaration Strictly

	References

