
Chainlink

Chainlink Smart Contract Security Review
Version: 2.0

December, 2018

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Audit Summary 3Per-Contract Vulnerability Summary . 4
Detailed Findings 4

Summary of Findings 5Users Can Form Malicious Requests to Steal Tokens From Oracles 6Malicious Users Can DOS/Hijack Requests From Chainlinked Contracts 7Oracles Can Claim Token Payments Without Processing the Request Callback 9Oracles’ internalId Can Be Duplicated, Leading to Unrecoverable Link Tokens 10Oracles Can Accept Invalid Requests, Constructed with Small _data 11
The checkChainlinkFulfillment Modifier Will Revert for All Requests Whose Callback is notthe Calling Contract . 12
cancelChainlinkRequest Reverts for All Requests whose Callback Address is not the CallingContract . 13Token Transfer Function Call is not Checked For Success . 14Calldata Modifier is Only Valid if the calldata is not Given by a User 15Miscellaneous General Comments and Suggestions . 17

A Test Suite 18

B Vulnerability Severity Classification 19

1

Chainlink Smart Contract Security Review Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the current implementationof the Chainlink platform. This review focuses on two library-like contracts (Chainlinked and ChainlinkLib)and an Oracle contract.
The combination of these three contracts allow users to deploy contracts which can request external data fromoracles and pay for the service in LINK tokens.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review regarding, the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality of Chainlink platform at the time of this review and ofthe contracts within the scope of the security review. A summary followed by a detailed review of the discoveredvulnerabilities is then given which assigns each vulnerability a severity rating (see Vulnerability Severity Classi-fication), an open/closed status and a recommendation. Additionally, findings which do not have direct securityimplications (but are potentially of interest) are marked as “informational”. Outputs of automated testing thatwere developed during this assessment are also included for reference (in the Appendix: Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitiesfound within the Chainlink contracts under review.

Overview

TheChainlink contracts can be logically separated into twoparts. TheOracle entity (encapsulated in Oracle.sol)and the Chainlink “libraries” (contained in ChainlinkLib.sol and Chainlinked.sol).
An Oracle is an entity in the platform that fulfils requests for off-chain data. Contracts on the platform auctionLink tokens to request this data. The tokens are transferred to the Oracle contract, which emits an event to alertthe Oracle a new request has been made. The contract to which the Oracle should send its off-chain data whenfulfilling a request may cancel the request after 5 minutes of the request being made if the Oracle has beenunresponsive. The owner of the Oracle contract can fulfil the request and claim the Link tokens.
The Chainlink library contracts provide a set of Solidity helper functions which users of the platform can inheritin their contracts. These functions help construct and correctly encode requests to get sent to the user’s chosenOracle.
The platform is currently in the early stages of its overall design and development, as outlined in the Chainlinkwhitepaper [1].

Page | 2

Chainlink Smart Contract Security Review Audit Summary

Audit Summary

This review was initially conducted on commit cee3568, which contains the three contracts that are the focusof this review, specifically ChainlinkLib.sol , Chainlinked.sol , and Oracle.sol . There are a number ofauxiliary contracts, which are outside the scope of this review. The complete list of contracts contained in therepository are:
contracts

Chainlinked.sol
ChainlinkLib.sol
Coordinator.sol
ENSResolver.sol
examples

BasicConsumer.sol
ConcreteChainlinked.sol
ConcreteChainlinkLib.sol
Consumer.sol
GetterSetter.sol
MaliciousChainlinked.sol
MaliciousChainlinkLib.sol
MaliciousConsumer.sol
MaliciousRequester.sol
UpdatableConsumer.sol

interfaces
ENSInterface.sol
LinkTokenInterface.sol
OracleInterface.sol

Migrations.sol
Oracle.sol

The final version of this review targets commit 9adafeb.
To support this review, the testing team used the following automated testing tools:

• Rattle: https://github.com/trailofbits/rattle

• Mythril: https://github.com/ConsenSys/mythril

• Slither: https://github.com/trailofbits/slither

• Surya: https://github.com/ConsenSys/surya

Output from these automated tools have been omitted from this report, but are available upon request.
All vulnerabilities identified during this assessment have been addressed by the development team.

Page | 3

https://github.com/smartcontractkit/chainlink/commit/cee3568a04c493af1a37c59071d37d0d9f9ba033
https://github.com/smartcontractkit/chainlink/commit/9adafeb845fe0fd41ee46e6b5d92869f0bd3c22b
https://github.com/trailofbits/rattle
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither
https://github.com/ConsenSys/surya

Chainlink Smart Contract Security Review Per-Contract Vulnerability Summary

Per-Contract Vulnerability Summary

Oracle (Oracle.sol)

A range of vulnerabilities with various severities were discovered in this contract. The vulnerabilities includestealing tokens from the Oracle contract, hijacking requests from legitimate Chainlink contracts, and the possi-bility of losing LINK tokens due to duplicate internalId entries. Some informational issues were also raised inrelation to this contract.
Chainlinked (Chainlinked.sol)

Two low severity issues were discovered in this contract. Two modifiers of this contract will not function asexpected if the callback contract is not the contract that made the request.
ChainlinkLib (ChainlinkLib.sol)

No potential vulnerabilities have been identified.

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Chainlink contracts thatwere examined. Each vulnerability has a severity classification which is determined from the likelihood andimpact of each issue by the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 4

Summary of Findings

ID Description Severity Status
LNK-01 Users Can Form Malicious Requests to Steal Tokens From Oracles High Resolved

LNK-02 Malicious Users Can DOS/Hijack Requests From Chainlinked Contracts High Resolved

LNK-03 Oracles Can Claim Token Payments Without Processing the RequestCallback Medium Resolved

LNK-04 Oracles’ internalId Can Be Duplicated, Leading to UnrecoverableLink Tokens Medium Resolved

LNK-05 Oracles Can Accept Invalid Requests, Constructed with Small _data Low Resolved

LNK-06 The checkChainlinkFulfillment Modifier Will Revert for All Re-quests Whose Callback is not the Calling Contract Low Resolved

LNK-07 cancelChainlinkRequest Reverts for All Requests whose Callback
Address is not the Calling Contract Low Resolved

LNK-08 Token Transfer Function Call is not Checked For Success Low Resolved

LNK-09 Calldata Modifier is Only Valid if the calldata is not Given by a User Informational Resolved

LNK-10 Miscellaneous General Comments and Suggestions Informational Resolved

5

Chainlink Smart Contract Security Review Detailed Findings

LNK-01 Users Can Form Malicious Requests to Steal Tokens From Oracles
Asset Oracle.sol
Status Resolved: In commit 4d968bf
Rating Severity: High Impact: High Likelihood: Medium

Description

Malicious users can steal tokens from Oracles by crafting and submitting specific requests.
When the owner of the Oracle fulfils a request, it performs an external call on line [118] which is intended tosupply the off-chain data to the calling contract. The current implementation is such that a user can manufactureany arbitrary address that the Oracle will call when fulfilling a request, along with any function signature andinitial parameter. Thus a user can craft a malicious request to the Link token contract, which when fulfilled, willtransfer Link tokens from the Oracle to the attacker.
To detail this further, the call on line [118] is:
return callback .addr. call (callback . functionId , callback . externalId , _data);

A malicious user can create a request, which sets callback.addr to the address of the Link token contract
address. They can set callback.functionId to the function signature of transfer(address,uint) and
they can set callback.externalId to be a beneficiary address of their choosing. These variables are set whencreating a request. The request’s data can be set to ask for a specific value (which is less than or equal to theavailable Link token balance of the Oracle, i.e. the current price of ether in wei). If an Oracle fulfils such a requestand calls fulfillData() (line [101]) with _data being a value, i.e. 200e18 (and the Oracle has more than 200Link tokens), the call on line [118] will send these tokens to the attacker’s beneficiary address.
An example of this attack is given in the tests that accompany this report, specifically test
test_attack_can_steal_oracle_tokens .
Note: This attack is not localised to just Link tokens but to all contracts and functions that do not require more than
two parameters. See LNK-02 for a further example.

Recommendations

There are a number of ways to address this issue, some more restrictive (in platform functionality) than others.The least restrictive is to blacklist addresses that callback.addr can take. For example, adding a require state-ment that ensures callback.addr is not the Link token address would be one approach. Although this resolvesthe immediate issue, it is typically dangerous to allow external users to set arbitrary addresses and function callsfor a low level call as LNK-02 illustrates.
A more restrictive approach would be to only allow callback addresses from the contracts that created the re-quest. This solution would also address LNK-02, LNK-07, and LNK-06. This however may be too restrictive forthe purposes of the Chainlink platform.
Resolution

The callback address is now restricted from being the LINK address.
Page | 6

https://github.com/smartcontractkit/chainlink/commit/4d968bf6c7361ee47a494d0ee132bd05894bfbf1

Chainlink Smart Contract Security Review Detailed Findings

LNK-02 Malicious Users Can DOS/Hijack Requests From Chainlinked Contracts
Asset Chainlinked.sol and Oracle.sol
Status Resolved: In commit a741f6b
Rating Severity: High Impact: High Likelihood: Medium

Description

Malicious users can hijack or perform Denial of Service (DOS) attacks on requests of Chainlinked contractsby replicating or front-running [2] legitimate requests.
The Chainlinked (Chainlinked.sol) contract contains the checkChainlinkFulfillment() modifier online [145]. This modifier is demonstrated in the examples that come with the repository. In these examplesthis modifier is used within the functions which contracts implement that will be called by the Oracle whenfulfilling requests. It requires that the caller of the function be the Oracle that corresponds to the request thatis being fulfilled. Thus, requests from Chainlinked contracts are expected to only be fulfilled by the Oraclethat they have requested. However, because a request can specify an arbitrary callback address, a malicious usercan also place a request where the callback address is a target Chainlinked contract. If this malicious requestgets fulfilled first (which can ask for incorrect or malicious results), the Oracle will call the legitimate contractand fulfil it with incorrect or malicious results. Because the known requests of a Chainlinked contract getsdeleted (see line [147]), the legitimate request will fail.
It could be such that the Oracle fulfils requests in the order in which they are received. In such cases, themalicious user could simply front-run the requests to be higher in the queue.
We further highlight this issue with a trivial example. Consider a simple contract that is using Chainlink to esti-mate the price of Ether relative to a random token, which users then purchase based off this price. A malicioususer could front-run the price request, putting their own request in with a malicious price source that is signifi-cantly lower than the actual price. The callback address of the malicious request would be the simple contract,and once fulfilled, would set the price of the simple contract to the malicious one given in the source.
An example of this attack is given in the test: test_attack_can_hijack_request that accompanies this report.

Recommendations

This issue is related to LNK-01, LNK-07, and LNK-06 in that it arises due to the fact that any request can specifyits own arbitrary callback address. A restrictive solution would be the same as given in LNK-01, where callbackaddresses are localised to the requester themselves.
A less restrictive approach may be to include msg.sender in the callbacks mapping in Oracle.sol .
Then, when fulfilling the request, the Oracle could send the msg.sender as an extra parameter. The
checkChainlinkFulfillment() modifier can then accept or reject the fulfilment based on the original re-quester, preventing malicious requests from being fulfilled.

Page | 7

https://github.com/smartcontractkit/chainlink/commit/a741f6b7cfb01135054382f8b8fa731aa8114989

Chainlink Smart Contract Security Review Detailed Findings

Resolution

The internalId within an Oracle has been modified to requestId which is a Keccak hash of the sender
with the sender’s nonce . This same id is used within the Chainlinked contracts which is required to fulfil arequest. Thus a malicious user can no longer hijack requests, as doing so would require the malicious request tobe sent from the Chainlinked contract in order to generate an equivalent requestId .

Page | 8

Chainlink Smart Contract Security Review Detailed Findings

LNK-03 Oracles Can Claim Token Payments Without Processing the Request Callback
Asset Oracle.sol
Status Resolved: In commit 27e126f
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

An Oracle can “fulfil” a request without updating state or performing useful calls to the requester. This is due tothe lack of gas stipend in the external call made on line [118].
This means an Oracle when submitting a fulfilment request can choose a gas amount which is only enough toperform the operations of changing its own state (that is, lines [110] through [114] and approx 52000 gas) andleave little for the external call (the delete on line [113] provides a gas refund meaning some gas will be leftfor the call). In such a scenario, the external call will fail, however the current transaction will pass, which allowsOracles to withdraw the tokens for the given request.
See the test test_attack_oracle_fulfill_no_callback for an example.
It should be noted, that even if the Oracle is assumed to not be malicious, it could still be possible that
estimateGas may incorrectly determine the gas to be sent in the external call. Thus an Oracle can mistakenlybe paid without fulfilling the request and as the callbacks mapping is deleted, cannot resend the request.
If an Oracle , blindly follows estimateGas , then this leaves an Oracle vulnerable to malicious requests whichconsume large amounts of gas, such as creating Gas Tokens [3].

Recommendations

One solution would be to require Oracles to dedicate at least some fixed amount of gas for updating the callbackcontract. This amount is dependent on how much state/operations are expected for implementations of suchcallback functions in the Chainlink platform.
There are a number of ways this could be implemented in the current code. One suchwaywould be to implementa lower bound on the gas required to send for a callback. This could be done by adding a require statement thatensures the Oracle has dedicated at least some constant (here gasConstant) amount of gas for the callback
contract. For example, adding the following just above line [118]:
require (gasleft () >= gasConstant);

Alternatively, an upper-bound on gas sent could be set by specifying a fixed amount in the external call itself.This solution would also prevent malicious callback requests from consuming large amounts of gas.

Resolution

A minimum gas limit of 400000 was introduced. This forces Oracles to supply at least 400000 gas whenfulfilling a request. For malicious contracts trying to exploit excess Oracle gas, it is up to the Oracle to decidewhether or not to pay for any extra gas beyond the 400000 , which they can dowhen performing the transaction.

Page | 9

https://github.com/smartcontractkit/chainlink/commit/27e126f0edb0f022263527f80269ece7d1b4a537

Chainlink Smart Contract Security Review Detailed Findings

LNK-04 Oracles’ internalId Can Be Duplicated, Leading to Unrecoverable Link Tokens
Asset Oracle.sol
Status Resolved: In commit 48dde7e
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

The internalId is constructed from the keccak hash of msg.sender and _externalId 1 (which is an ar-
bitrary value sent by the caller). Although the Chainlinked contracts increment this value, it is possible forcontracts to implement their own versions or call the Oracle directly (via the Link token). In such cases, a re-peated _externalId from a contract/address will lead to a duplication of internalId in the Oracle contract
(one example would be an implementation that accidentally sends 0 as the externalId many times, or repeatsan id).
In such cases, the Link tokens that were sent in the previous request (of the same internalId) become un-recoverable as the callbacks mapping entry gets overridden. This means a user cannot cancel the originalrequest, nor can the Oracle fulfil the original request.
As the withdraw() function can only withdraw withdrawableWei amount of tokens, the original tokens sentto the contract are also non-withdrawable.
Please refer to the test_duplicate_id_lost_tokens test that accompanies this report for an exploitation
example.

Recommendations

This vulnerability can be mitigated by ensuring that an internalId does not exist before entering it into the
callbacks mapping. More specifically, adding a require after line [76] which ensures that the internalId isnot currently in use, will prevent overwriting the callbacks mapping.
Alternatively, a nonce could be introduced in the generation of internalId , however this would require mod-
ifying the logic of the cancel() function to accommodate duplicate externalId entries.

Resolution

A require statement has been added on line [86] which ensures there is no current entry in the callbacksmapping, preventing duplication.

1See lines [76] and [122].

Page | 10

https://github.com/smartcontractkit/chainlink/commit/48dde7ebd9e0ac5f0659e9f580761f03d02db663

Chainlink Smart Contract Security Review Detailed Findings

LNK-05 Oracles Can Accept Invalid Requests, Constructed with Small _data

Asset Oracle.sol
Status Resolved: In commit afe8509
Rating Severity: Low Impact: Low Likelihood: Low

Description

The current Oracle.sol implementation does not check the length of _data in onTokenTransfer on line[51].
This function uses assembly to add the address and amount to the _data variable before calling delegatecall

on _data . If the length of data is less than 64 bytes, the assembly still succeeds and the variables to be inserted
into _data can be truncated (depending on the length of _data). For incorrect lengths of _data greater
than 24 bytes, the delegatecall will revert due to incorrect encoding of the requestData() parameters.
However, the onTokenTransfer() function succeeds for _data values of lengths 24 bytes and under.
In these cases, Link tokens successfully get sent to the contract and the sender and amount variables are setto 0 (regardless of how many tokens are actually sent). This scenario leads to locking of Link tokens, as evenif the Oracle fulfils the request, the amount is 0 and so withdrawableWei does not get incremented. Thismeans the Oracle cannot claim these locked tokens.
An example of this scenario is given in the test: test_on_token_transfer_data_length that accompanies thisreport.

Recommendations

The _data variable should be checked to ensure that its length is at least as long as expected. Short lengths can
lead to unintended manipulations of the sender and amount variables as they are injected through assemblyunder the assumption that _data is long enough to contain them.

Resolution

A modifier was created, validRequestLength() which is used on line [58]. This modifier ensures the length of
_data is at least as long as theminmum length of the expected arguments it requires in ensuing delegatecall
on line [68].

Page | 11

https://github.com/smartcontractkit/chainlink/commit/afa8509aac91ee26be4b48c0ad55def583519147

Chainlink Smart Contract Security Review Detailed Findings

LNK-06 The checkChainlinkFulfillment ModifierWill Revert for All RequestsWhose Callbackis not the Calling Contract
Asset Chainlinked.sol
Status Resolved: In commit 0e8c523
Rating Severity: Low Impact: Low Likelihood: Low

Description

A Chainlinked contract stores amapping of unfulfilledRequests . Themodifier cancelChainlinkRequest()

checks this mapping to ensure the msg.sender is the Oracle of the request. This only functions correctly if
the request was made from the current contract.
Consider two Chainlinked contracts, one as the requester and one as the callback contract to receive fulfilledrequests. The requester’s unfulfilledRequests mapping will store the requests made, however the callback
contract’s mapping will not. If the callback contract were to utilise the checkChainlinkFulfillment modifier,requests will always revert due to themapping being empty. (We assume the callback contract is not also sendingrequests of its own.)

Recommendations

This issue is related to LNK-01, LNK-02, and LNK-07 in that it arises from the general ability to specify arbitrarycontracts to fulfil the data.
A restrictive approach would be to enforce that the contract making the request be the callback contract, asdiscussed in LNK-01.
As long as this modifier is not used in this scenario (which is fundamentally an implementation issue), there are noimmediate related security risks. Thus, this issue could be acknowledged and we recommend adding commentsthat indicate that the checkChainlinkFulfillment modifier is only to be used for contracts that are both therequester and the callback contract.

Resolution

A new function, addExternalRequest() on line [94] has been added which allows Chainlinked contracts to
add external requests, allowing for other contracts to make requests on their behalf.

Page | 12

https://github.com/smartcontractkit/chainlink/commit/0e8c523901b7e5c36fe7994add9d1ca700cb767a

Chainlink Smart Contract Security Review Detailed Findings

LNK-07 cancelChainlinkRequest Reverts for All Requests whose Callback Address is not the
Calling Contract

Asset Chainlinked.sol
Status Resolved: In commit 0e8c523
Rating Severity: Low Impact: Low Likelihood: Low

Description

The Chainlinked contract provides a number of helper functions designed to be inherited by contracts using
the Chainlink platform. One of these functions, cancelChainlinkRequest() (see line [54]) will only operate as
expected if the _callbackAddress of the request is the current contract. This is due to the require on line
[123] of Oracle.sol .
Thus, if requests are made with callback addresses that have not explicitly implemented a
cancelChainLinkRequest() function, these requests will be impossible to cancel.
We acknowledge that the purpose of this may be to make the requests generic, i.e. the callback address may beanother contract which inherits the Chainlinked contract, however due to LNK-06 this kind of setup will alsorevert.
A noteworthy point is that this structure gives a non-intuitive return of tokens. By this we mean, the contractthat paid for the request, does not necessarily get refunded if the request gets cancelled. Only the callbackcontract can initiate the cancel and is the one that will receive the cancelled tokens.
We raise this issue primarily to ensure that it is known by the authors.

Recommendations

This issue is related to LNK-01, LNK-02, and LNK-06 in that it arises from the general ability to specify arbitrarycontracts to fulfil the data.
A restrictive approach would be to enforce that the contract making the request be the contract that can cancelthe request.
This may be too restrictive, in which case an or statement could be added to the require on line [54] of
Oracle.sol which would allow the caller to also cancel the request. This would also involve adding anotherfield to the Callback struct, which would also store the msg.sender of the request.
Alternatively this may be a known issue and no modification may be desired.

Resolution

As in LNK-06, a new function, addExternalRequest() on line [94] has been addedwhich allows Chainlinked
contracts to add external requests, allowing for other contracts to make requests on their behalf.

Page | 13

https://github.com/smartcontractkit/chainlink/commit/0e8c523901b7e5c36fe7994add9d1ca700cb767a

Chainlink Smart Contract Security Review Detailed Findings

LNK-08 Token Transfer Function Call is not Checked For Success
Asset Oracle.sol
Status Resolved: In commit 251e5a8
Rating Severity: Low Impact: Low Likelihood: Low

Description

The withdraw() function on line [129] does not check for the success of the Link transfer on line [135]. Although
the current implementation of Link tokens revert instead of returning false , other ERC20 implementations /future implementations of Link tokens may return false. In such cases, Link tokens will become unrecoverableas, withdrawableWei is reduced in this function without verifying that the tokens were in fact transferred.
We raise this issue as we assume the author is anticipating this scenario as the other Link transfer call is checkedwithin this contract (see line [148]).

Recommendations

Wrap the transfer on line [135] in a require.

Resolution

The transfer call has been wrapped in a require statement.

Page | 14

https://github.com/smartcontractkit/chainlink/commit/251e5a8f46aea684d64edf48b01a78cd7b611729

Chainlink Smart Contract Security Review Detailed Findings

LNK-09 Calldata Modifier is Only Valid if the calldata is not Given by a User
Asset Oracle.sol
Status Resolved: In commit bafa91c
Rating Informational

Description

The functionality in the permittedFunctionsForLINK() modifier (on line [175]) only restricts the function sig-
nature if the function it protects is called by a contract that doesn’t allow a user to enter the calldata . Thecurrent Link token is an example. If a function with this modifier is allowed to be called by any external actor,the modifier can be bypassed, simply by modifying the calldata .
If this modifier is not used in conjunction with a modifier such as onlyLINK() (and the LINK contract does not
allow users to modify calldata) it will be ineffective and thus can potentially introduce unexpected behavioursin future versions, or if the functionality of the Link token changes.
The modifier is vulnerable as a user can construct calldata in such a way that satisfies the require in
permittedFunctionsForLink() whilst giving arbitrary values to _data in the onTokenTransfer() func-
tion. The modifier checks that the 4 bytes at position 132 in the calldata are the required function selector. Fortypical calldata, this position corresponds to the first 4 bytes of the dynamic _data variable. This can be seen
by looking at calldata for a conventional call to the onTokenTransfer() function, which will be of the form:

Figure 1: Standard encoded calldata
With the standard calldata , the modifier checks the byte position at 132 to ensure that _data has the
correct function selector. Notice here, that 2798cecd represents the requestData() function selector. The
a4c0ed36 represents the onTokenTransfer() function selector. In this case, the modifier would function asexpected.
However, one could equally send the following calldata (if the user were able to send or modify the calldata):

Figure 2: Maliciously encoded calldata

Notice that in this example, that the encoding for the dynamic sized _data variable has been abused. We have
Page | 15

https://github.com/smartcontractkit/chainlink/commit/bafa91c3df967da998a8b8ef028d94b78f0a498e

Chainlink Smart Contract Security Review Detailed Findings

modified the location to point further away in the calldata, and left the 2798cecd function selector at position
132, thus satisfying the require of the modifier. With this calldata , the onTokenTransfer() function will
read _data as a9ea9eff... and thus allow us to call any function we choose, bypassing the intendedmodifier.
This issue appears to not be exploitable in the current context, assuming the Link token does not allow users tomodify the calldata when calling this function. We raise this issue as informational as something to be awareof in other contracts or in future upgrades.

Recommendations

This issue can be resolved by checking the first 4 bytes of the _data variable itself, rather than checking aspecific location in calldata (which can be externally manipulated).
More concretely, we suggest using a modifier of the form:
modifier permittedFunctionsForLINK (bytes _data) {

bytes4 funcSelector ;
assembly {

funcSelector := mload (add(_data , 32))
}
require (funcSelector == permittedFunc , "Must use whitelisted functions ");

}

Resolution

The permittedFunctionsForLINK modifier was adjusted to that of the recommendation.

Page | 16

Chainlink Smart Contract Security Review Detailed Findings

LNK-10 Miscellaneous General Comments and Suggestions
Asset Oracle.sol
Status Resolved: See inline comments
Rating Informational

Description

This section outlines miscellaneous comments and suggestions that were found as a by-product of this review.We include this section as it may be useful for the authors to improve readability of the code.

• line [23] - withdrawableWei represents the amount of Link tokens that can be withdrawn by the Oracle.Something akin to withdrawableTokens may be a better suited name for this variable.
3 Resolved in commit [f975f16]

• line [82] - There is a constant, hard-coded expiry time in the Oracle contract. It may benefit users tomake this a public constant variable, such that users can lookup the contract to know when they areable to cancel their requests for this oracle. This will also aid readability of the code. For example,
uint constant public EXPIRY_TIME = 5 minutes .

3 Resolved in commit [51c063d]
• Constants could be highlighted by naming with capitals. Specifically, on line [22] in Oracle.sol ,

oneForConsistentGasCost could be set to ONE_FOR_CONSISTENT_GAS_COST . Similarly, the
permittedFunc constant on line [148] could be moved to the top of the contract and given capi-
tals, such as PERMITTED_FUNC . There are also four (4) constants in Chainlinked.sol which could bechanged to comply with this naming convention.
3 Resolved in commit [65c28a5]

• The public functions in Oracle.sol are better suited to the external visibility modifier (gas saving),
with the exception of the onTokenTransfer() .
3 Resolved in commit [ba9a8be] and [c06456b]

• line [94] - It was noticed that Oracles are limited to 32 bytes in data that can be returned. It appearsmultiplerequests would be required if a Chainlinked contract needed more than 32 bytes to express the result.
3 Acknowledged and extensions are planned in future versions.

Recommendations

Ensure these are as expected.

Resolution

These recommendations have been implemented, see inline comments above.

Page | 17

https://github.com/smartcontractkit/chainlink/commit/f975f1654a1bf101ac7be32fe13910f4aa55cd70
https://github.com/smartcontractkit/chainlink/commit/51c063d2d0d9679eb420dd66043f659d70f2781a
https://github.com/smartcontractkit/chainlink/commit/65c28a5f60fca355aa0e6d0e417f850c4a38d2f9
https://github.com/smartcontractkit/chainlink/commit/ba9a8bed0685e077ea70f4640f661817b5aef5b7
https://github.com/smartcontractkit/chainlink/commit/c06456b5db0ab4b8a44bd564cc13689bd01c24df

Chainlink Smart Contract Security Review Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are provided alongside thisdocument. The pytest framework was used to perform these tests and the output is given below.
tests / test_attacks .py :: test_attack_can_steal_oracle_tokens FAILED [2%]
tests / test_attacks .py :: test_attack_can_hijack_request FAILED [4%]
tests / test_attacks .py :: test_attack_oracle_fulfill_no_callback FAILED [6%]
tests / test_chainlinked .py :: test_new_run [A9E -self - fulfillRequest (bytes32 , bytes32)] PASSED [9%]
tests / test_chainlinked .py :: test_new_run [A9E -self - invalid_callback_selector] PASSED [11%]
tests / test_chainlinked .py :: test_new_run [A9E -self -] PASSED [13%]
tests / test_chainlinked .py :: test_new_run [A9E -other - fulfillRequest (bytes32 , bytes32)]PASSED [16%]
tests / test_chainlinked .py :: test_new_run [N/A-self - fulfillRequest (bytes32 , bytes32)] PASSED [18%]
tests / test_chainlinked .py :: test_make_request [128 -500 - True] PASSED [20%]
tests / test_chainlinked .py :: test_make_request [128 -0 - True] PASSED [23%]
tests / test_chainlinked .py :: test_make_request [0 -500 - True] PASSED [25%]
tests / test_chainlinked .py :: test_make_request [128 -10001 - False] PASSED [27%]
tests / test_chainlinked .py :: test_consumer_can_make_multiple_requests PASSED [30%]
tests / test_chainlinked .py :: test_can_cancel_request PASSED [32%]
tests / test_chainlinked .py :: test_cannot_cancel_if_different_callback_addr PASSED [34%]
tests / test_chainlinked .py :: test_can_fulfill_request PASSED [37%]
tests / test_chainlinked .py :: test_cannot_fulfill_request_if_different_callback_addr PASSED [39%]
tests / test_chainlinklib .py :: test_adding_data_sizes [1] PASSED [41%]
tests / test_chainlinklib .py :: test_adding_data_sizes [2] PASSED [44%]
tests / test_chainlinklib .py :: test_adding_data_sizes [10] PASSED [46%]
tests / test_chainlinklib .py :: test_adding_data_sizes [127] PASSED [48%]
tests / test_chainlinklib .py :: test_adding_data_sizes [128] PASSED [51%]
tests / test_chainlinklib .py :: test_adding_data_sizes [129] PASSED [53%]
tests / test_chainlinklib .py :: test_adding_data_sizes [500] PASSED [55%]
tests / test_chainlinklib .py :: test_adding_data_sizes [1000] PASSED [58%]
tests / test_chainlinklib .py :: test_adding_string_array PASSED [60%]
tests / test_chainlinklib .py :: test_add_bytes PASSED [62%]
tests / test_chainlinklib .py :: test_close_buffer PASSED [65%]
tests / test_deploy .py :: test_deploy PASSED [67%]
tests / test_oracle .py :: test_on_token_transfer_data_length [1- False] PASSED [69%]
tests / test_oracle .py :: test_on_token_transfer_data_length [2- False] PASSED [72%]
tests / test_oracle .py :: test_on_token_transfer_data_length [12 - False] PASSED [74%]
tests / test_oracle .py :: test_on_token_transfer_data_length [13 - False] PASSED [76%]
tests / test_oracle .py :: test_on_token_transfer_data_length [256 - False] PASSED [79%]
tests / test_oracle .py :: test_on_token_transfer_data_length [288 - True] PASSED [81%]
tests / test_oracle .py :: test_on_token_transfer_data_length [320 - True] PASSED [83%]
tests / test_oracle .py :: test_on_token_transfer_data_length [352 - True] PASSED [86%]
tests / test_oracle .py :: test_can_duplicate_id FAILED [88%]
tests / test_oracle .py :: test_cannot_DOS_requests [450000.0] PASSED [90%]
tests / test_oracle .py :: test_cannot_DOS_requests [500000.0] PASSED [93%]
tests / test_oracle .py :: test_cannot_DOS_requests [1000000.0] PASSED [95%]
tests / test_oracle .py :: test_cannot_DOS_requests [2000000.0] PASSED [97%]
tests / test_oracle .py :: test_cannot_DOS_requests [5000000.0] PASSED [100%]

Page | 18

Chainlink Smart Contract Security Review Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. Thetotal severity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] Ari Juels Steve Ellis and Sergey Nazarov. Chainlink: A Decentralized Oracle Network, September 2017,Available: https://link.smartcontract.com/whitepaper.
[2] Sigma Prime. Solidity Security - Front Running. Blog, 2018, Available: https://blog.sigmaprime.io/

solidity-security.html#race-conditions. [Accessed 2018].
[3] Gas Token. Cheaper Ethereum Transactions Today, Available: https://gastoken.io/. [Accessed 2018].

Page | 19

https://link.smartcontract.com/whitepaper
https://blog.sigmaprime.io/solidity-security.html#race-conditions
https://blog.sigmaprime.io/solidity-security.html#race-conditions
https://gastoken.io/

	Introduction
	Disclaimer
	Document Structure
	Overview

	Audit Summary
	Per-Contract Vulnerability Summary

	Detailed Findings
	 Summary of Findings
	Users Can Form Malicious Requests to Steal Tokens From Oracles
	Malicious Users Can DOS/Hijack Requests From Chainlinked Contracts
	Oracles Can Claim Token Payments Without Processing the Request Callback
	Oracles' internalId Can Be Duplicated, Leading to Unrecoverable Link Tokens
	Oracles Can Accept Invalid Requests, Constructed with Small _data
	The checkChainlinkFulfillment Modifier Will Revert for All Requests Whose Callback is not the Calling Contract
	cancelChainlinkRequest Reverts for All Requests whose Callback Address is not the Calling Contract
	Token Transfer Function Call is not Checked For Success
	Calldata Modifier is Only Valid if the calldata is not Given by a User
	Miscellaneous General Comments and Suggestions

	Test Suite
	Vulnerability Severity Classification

