
Fantom

Fantom Multisig Contract Review
Version: 1.0

July, 2018

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Audit Summary 3Per-Contract Vulnerability Summary . 3
Detailed Findings 4

Summary of Findings 4A set of owners (less than required) can force arbitrary transactions 6
Redundant function logic . 7Miscellaneous comments, gas savings and suggestions . 8

A Test Suite 9

B Vulnerability Severity Classification 10

1

Fantom Multisig Contract Review Introduction

Introduction

Sigma Prime was commercially engaged by Fantom [1] to perform a time-boxed security review of the smartcontract MultiSigWallet which implements amechanism allowingmultiple parties to agree upon a transaction
prior to its execution. The review focuses solely on the security aspects of the Solidity implementation of thecontract, however general recommendations and informational comments are also offered.
Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review regarding, the underlying business model or the individuals involved in theproject.
Document Structure

The first section provides an overview of the functionality of the contract contained in the scope of the securityreview (MultiSigWallet). A summary of the discovered vulnerabilities is then followed by a detailed review,
where a severity rating is assigned to each vulnerability (see Vulnerability Severity Classification), along with anopen/closed status and a recommendation. Additionally, findings which do not have direct security implications(but are potentially of interest) are marked as “informational”. Outputs of automated testing that were developedduring this assessment are also included for reference (see the Appendix: Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilities inthe MultiSigWallet contract.

Overview

The MultiSigWallet contract serves multiple purposes, namely it:
• Specifies a set of owners and a required number of owners that must reach agreement on a transaction

prior to its execution.
• Includes an enterRecoveryMode function allowing an owner to progressively decrease required by 1

if the elapsed time since the last transaction exceeds the recoveryModeTriggerTime .
• Provides functionality allowing an owner to submit a transaction. If the required number of owners

confirms the transaction, the transaction may be executed by an owner .
• Allows an owner to revoke their confirmation of a transaction, if desired.
• Provides a public function (getTransactionIds) that returns an array containing all transactions IDs

less than an input value _number .
It should be noted that this multisig is a one-time use multi-sig contract. Owners cannot be added or removedand if the recovery mode is activated it cannot be inactivated.
Note that MultiSigWallet does not contain any development relating to Fantom’s DAG-based platform. The
contract relates solely to transactions performed on the Ethereum blockchain and does not dictate the Fantomplatforms’ functionality. Additional details regarding Fantom’s DAG-based platform can be found in the FantomWhitepaper [1].

Page | 2

Fantom Multisig Contract Review Audit Summary

Audit Summary

This review was initially conducted on commit ac15ce9, which includes the file MultiSigWallet.sol. This filecontains a single contract (MultiSigWallet) and a single library (SafeMath).
The final version of this review targets commit 48c51ba.

Per-Contract Vulnerability Summary

SafeMath (MultiSigWallet.sol)

No potential vulnerabilities have been identified.
MultiSigWallet (MultiSigWallet.sol)

Some gas-saving modifications are suggested.All discovered vulnerabilities have been addressed by the authors.

Page | 3

https://github.com/Fantom-foundation/MultiSigWallet/commit/ac15ce9f5d68e940f04c4100ce98842d7078d8a5
https://github.com/Fantom-foundation/MultiSigWallet/commit/48c51ba1c4f27019ab5a57b35ba8c896658e791f

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the MultiSigWallet con-
tract. The severity classification assigned to each vulnerability is determined from the likelihood and impact ofeach issue by the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contract, including gas optimisations, are also described in this sectionand are labelled as “informational”.

4

Summary of Findings

ID Description Severity Status
FMS-01 A set of owners (less than required) can force arbitrary transactions Medium Resolved
FMS-02 Redundant function logic Informational Resolved
FMS-03 Miscellaneous comments, gas savings and suggestions Informational Resolved

5

Fantom Multisig Contract Review Detailed Findings

FMS-01 A set of owners (less than required) can force arbitrary transactions
Asset MultiSigWallet.sol
Status Closed: Resolved in commit 48c51ba.
Rating Severity: Medium Impact: High Likelihood: Low

Description

Conventionally, Multisignature wallets require p signatures of n total users in order to execute a transaction. If
n−p+1 users disagree with the transaction, the transaction should not be accepted. This multi-signature wallet,allows the collusion of n − p + 1 (or more) to force an arbitrary transaction to be accepted.
To clarify, consider the case n = 10, p = 7. That is, there are 10 owners and 7 are required to confirm atransaction. n − p + 1 = 4, so consider 4 owners wish to steal the funds. Typically 4 owners would not beenough to confirm a transaction which takes the funds. In this case, the 4 owners can perform an attack wherethey never confirm a transaction, which means the remaining 6 owners can never submit a transaction. This caneventually force the recovery mode by making the contract stagnant. Once the specified time has elapsed, thereis a race condition for the 4 malicious owners to enterRecoveryMode() then steal the funds. Thus n − p + 1
owners is sufficient force arbitrary transactions, compared to the traditional, required p owners.

Recommendations

There are a number of implementations that can address this issue. One example would be to allow an owner toincrement lastTransactionTime . Thus if all keys are not lost, an owner can prevent a subset of malicious users
from calling enterRecoveryMode() . This solution only forces a stalemate between malicious users preventing
anyone from withdrawing funds.
Another possibility is to change the functionality of enterRecoveryMode() such that it reduces the value of
required by one. In each recovery periodn, p will be reduced which therefore increases the number of required
malicious users (n−p+1) to perform this attack. In the example n = 10, p = 7, the 6 good owners would then beable to perform a transaction after one iteration of enterRecoveryMode and the 4 malicious actors still cannot
confirm a transaction.

Resolution

The second recommendation was opted for by the authors whereby the recoveryMode function now reduces
required by one each call.

Page | 6

https://github.com/Fantom-foundation/MultiSigWallet/commit/48c51ba1c4f27019ab5a57b35ba8c896658e791f

Fantom Multisig Contract Review Detailed Findings

FMS-02 Redundant function logic
Asset MultiSigWallet.sol
Status Closed: Removed from codebase in commit d2da277.
Rating Informational

Description

The function getTransactionIds() contains redundant logic.
This functionwill always return an array of integers from0 to number if number is less than transactionCount .
As count will always be equal to i , the resulting array will always be of the form [0,1,2,3,4,5...] .
Furthermore, if _number is greater than transactionCount the for loop will attempt to assign a value to thearray, greater than the arrays length.
The entire function appears to be redundant, which may be a bi-product from simplifying the original contract.

Recommendations

Either remove this function, unless it has some purpose, i.e backwards compatibility or if it is necessary, on line[284] replace transactionCount with _number to ensure the _transactionIds array’s referenced index isnot greater than the array’s length.

Resolution

This function was removed from the codebase.

Page | 7

https://github.com/Fantom-foundation/MultiSigWallet/commit/d2da2770728fa4deb88c14d376e6b7d5f4afc831

Fantom Multisig Contract Review Detailed Findings

FMS-03 Miscellaneous comments, gas savings and suggestions
Asset MultiSigWallet.sol
Status Closed: See inline comments
Rating Informational

Description

This section describes some non-security related comments and potential gas-saving optimisations that werediscovered in the process of this audit.

• [209] - The require on this line is redundant as this is checked in the notNull modifier.
3 Resolved in commit [24f133a].

• Lines [187, 257, 276] initialise a variable to it’s default value. These are memory variables and cost minimalgas, however not initialising these variables can save gas in unoptimized code.
3 Resolved in commit [24f133a].

• [99] - The _recoveryModeTriggerTime is only validated to be greater than 0. There is no minimum time,
thus multisigs of this form can be set with very low recoveryModeTriggerTime for example, 1, defeating
the purpose of a multisig contract.
3 This has been acknowledged by the authors.

• Once the requisite time has expired and an owner activates the recovery mode, the contract cannot bereturn to its original state. It will forever have required = 1 , indicating that a new multisig contract will
need to be deployed.
3 This has been acknowledged by the authors.

Recommendations

Ensure these are as expected.

Page | 8

https://github.com/Fantom-foundation/MultiSigWallet/commit/24f133a6e6ef5311ee4d787390bbbec9e0eba3f4
https://github.com/Fantom-foundation/MultiSigWallet/commit/24f133a6e6ef5311ee4d787390bbbec9e0eba3f4

Fantom Multisig Contract Review Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are given along with this docu-ment. The pytest framework was used to perform these tests and the output of pytest -v is given below.
test_deployment .py:: test_deploys PASSED [2%]
test_deployment .py:: test_params_instantiated PASSED [4%]
test_deployment .py:: test_wont_deploy_with_invalid_required_count PASSED [6%]
test_execute_transaction .py:: test_execute_transaction [8-5-5- True] PASSED [9%]
test_execute_transaction .py:: test_execute_transaction [2-1-1- True] PASSED [11%]
test_execute_transaction .py:: test_execute_transaction [4-4-4- True] PASSED [13%]
test_execute_transaction .py:: test_execute_transaction [1-1-1- True] PASSED [15%]
test_execute_transaction .py:: test_execute_transaction [20 -10 -10 - True] PASSED [18%]
test_execute_transaction .py:: test_execute_transaction [20 -10 -1 - False] PASSED [20%]
test_execute_transaction .py:: test_execute_transaction [8-5-4- False] PASSED [22%]
test_execute_transaction .py:: test_execute_transaction [2-2-1- False] PASSED [25%]
test_recovery_mode .py:: test_updates_last_tx_time PASSED [27%]
test_recovery_mode .py:: test_enters_recover [100 -50 - False] PASSED [29%]
test_recovery_mode .py:: test_enters_recover [100000 -50 - False] PASSED [31%]
test_recovery_mode .py:: test_enters_recover [937502340 -100 - False] PASSED [34%]
test_recovery_mode .py:: test_enters_recover [100 -100 - True] PASSED [36%]
test_recovery_mode .py:: test_enters_recover [1 -100 - True] PASSED [38%]
test_recovery_mode .py:: test_enters_recover [100 -101 - True] PASSED [40%]
test_recovery_mode .py:: test_enters_recover [100 -10000 - True] PASSED [43%]
test_recovery_mode .py:: test_recovery_iterations [3-2-1- True] PASSED [45%]
test_recovery_mode .py:: test_recovery_iterations [5-2-1- False] PASSED [47%]
test_recovery_mode .py:: test_recovery_iterations [5-2-3- True] PASSED [50%]
test_recovery_mode .py:: test_recovery_iterations [5-3-2- True] PASSED [52%]
test_recovery_mode .py:: test_recovery_iterations [5-1-2- False] PASSED [54%]
test_recovery_mode .py:: test_recovery_iterations [5-1-3- False] PASSED [56%]
test_recovery_mode .py:: test_recovery_iterations [5-1-4- True] PASSED [59%]
test_recovery_mode .py:: test_recovery_iterations [5-3-1- False] PASSED [61%]
test_revoke_confirmation .py:: test_confirmation_revocation PASSED [63%]
test_scenario .py:: test_scenarios [10 -10 -10 -5 -50 -1 -1 - True] PASSED [65%]
test_scenario .py:: test_scenarios [10 -1 -5 -2 -30 -1 -1 - True] PASSED [68%]
test_scenario .py:: test_scenarios [10-1-1-0-1-1-1- True] PASSED [70%]
test_scenario .py:: test_scenarios [1-1-1-0-1-1-1- True] PASSED [72%]
test_scenario .py:: test_scenarios [10 -5 -5 -9 -50 -50 -1 - True] PASSED [75%]
test_scenario .py:: test_scenarios [10 -10 -4 -5 -50 -1 -2 - False] PASSED [77%]
test_scenario .py:: test_scenarios [10 -1 -10 -2 -30 -1 -2 - True] PASSED [79%]
test_scenario .py:: test_scenarios [10-1-1-0-1-1-2- True] PASSED [81%]
test_scenario .py:: test_scenarios [1-1-1-0-1-1-2- True] PASSED [84%]
test_scenario .py:: test_scenarios [10 -5 -5 -9 -50 -50 -2 - True] PASSED [86%]
test_scenario .py:: test_scenarios [10 -10 -4 -5 -50 -1 -3 - False] PASSED [88%]
test_scenario .py:: test_scenarios [10 -1 -10 -2 -30 -1 -3 - False] PASSED [90%]
test_scenario .py:: test_scenarios [10-1-1-0-1-1-3- False] PASSED [93%]
test_scenario .py:: test_scenarios [1-1-1-0-1-1-3- False] PASSED [95%]
test_scenario .py:: test_scenarios [10 -5 -1 -9 -50 -50 -3 - False] PASSED [97%]
test_token_transfer .py:: test_token_transfer PASSED [100%]

============================ 44 passed in 16.21 seconds ===========================

Page | 9

Fantom Multisig Contract Review Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. Thetotal severity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] FANTOM - Whitepaper v1.3. Website, May 2018, Available: http://www.fantom.foundation/data/
FANTOM%20Whitepaper%20English%20v1.3.pdf.

Page | 10

http://www.fantom.foundation/data/FANTOM%20Whitepaper%20English%20v1.3.pdf
http://www.fantom.foundation/data/FANTOM%20Whitepaper%20English%20v1.3.pdf

	Introduction
	Disclaimer
	Document Structure
	Overview

	Audit Summary
	Per-Contract Vulnerability Summary

	Detailed Findings
	 Summary of Findings
	A set of owners (less than push0 g 0 Gpoprequiredcodebackgroundpush0 g 0 Gpoptowidthheightdepth) can force arbitrary transactions
	Redundant function logic
	Miscellaneous comments, gas savings and suggestions

	Test Suite
	Vulnerability Severity Classification

