
Con�dential

SMART CONTRACT AUDIT REPORT

for

PERPETUAL PROTOCOL

Prepared By: Shuxiao Wang

PeckShield

Jan. 27, 2021

1/19 PeckShield Audit Report #: 2021-003

sxwang@peckshield.com

Con�dential

Document Properties

Client Perpetual Protocol

Title Smart Contract Audit Report

Target Staking, Rewards Vesting, and Keeper

Version 1.0-rc1

Author Chiachih Wu

Auditors Chiachih Wu, Xudong Shao

Reviewed by Je� Liu

Approved by Xuxian Jiang

Classi�cation Con�dential

Version Info

Version Date Author(s) Description

1.0-rc1 Jan. 27, 2021 Chiachih Wu Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang

Phone +86 173 6454 5338

Email contact@peckshield.com

2/19 PeckShield Audit Report #: 2021-003

Con�dential

Contents

1 Introduction 4

1.1 About Perpetual Protocol . 4

1.2 About PeckShield . 5

1.3 Methodology . 5

1.4 Disclaimer . 7

2 Findings 9

2.1 Summary . 9

2.2 Key Findings . 10

3 Detailed Results 11

3.1 Missed Access Control in KeeperReward L1/L2 . 11

3.2 Unused Mapping in PerpRewardVesting . 12

3.3 Optimized TmpRewardPoolL1::removeFeeRewardPool() 14

3.4 Inaccurate Event Emitted in StakedPerpToken::stake() 16

4 Conclusion 18

References 19

3/19 PeckShield Audit Report #: 2021-003

Con�dential

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the

Perpetual Protocol's Staking, Rewards Vesting, and Keeper functionality, we outline in the report

our systematic approach to evaluate potential security issues in the smart contract implementation,

expose possible semantic inconsistencies between smart contract code and design document, and

provide additional suggestions or recommendations for improvement. Our results show that the

given branch of Staking, Rewards Vesting, and Keeper contracts can be further improved due to the

presence of several issues related to either security or performance. This document outlines our audit

results.

1.1 About Perpetual Protocol

Perpetual Protocol, formerly known as Strike Protocol, is designed as a decentralized perpetual con-

tract trading protocol for a list of assets with Uniswap-inspired Automated Market Makers (AMMs).

It also has a built-in Liquidity Reserve which backs and secures the AMMs, and a build-in staking

pool that provides a backstop for each virtual market. Similar to Uniswap, traders can trade with

virtual AMMs without counter-parties, PERP token holders can stake PERPs to staking pool and

collect transaction fees.

The basic information of Perpetual Protocol is as follows:

Table 1.1: Basic Information of Perpetual Protocol

Item Description

Issuer Perpetual Protocol

Website https://perp.�/

Type Ethereum Smart Contract

Platform Solidity

Audit Method Whitebox

Latest Audit Report Jan. 27, 2021

4/19 PeckShield Audit Report #: 2021-003

Con�dential

In the following, we show the Git repository of reviewed �les and the commit hash value used in

this audit:

� https://github.com/perpetual-protocol/perp-contract (5247397)

1.2 About PeckShield

PeckShield Inc. [7] is a leading blockchain security company with the goal of elevating the security,

privacy, and usability of the current blockchain ecosystems by o�ering top-notch, industry-leading

services and products (including the service of smart contract auditing). We are reachable at Telegram

(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classi�cation

Im
p
a
c
t

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we de�ne the following terminology based on the OWASP Risk Rating

Methodology [6]:

� Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in

the wild;

� Impact measures the technical loss and business damage of a successful attack;

� Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and

low respectively. Severity is determined by likelihood and impact and can be classi�ed into four

categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

5/19 PeckShield Audit Report #: 2021-003

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Con�dential

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Over�ows & Under�ows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses

Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/19 PeckShield Audit Report #: 2021-003

Con�dential

To evaluate the risk, we go through a list of check items and each would be labeled with

a severity category. For one check item, if our tool or analysis does not identify any issue, the

contract is considered safe regarding the check item. For any discovered issue, we might further

deploy contracts on our private testnet and run tests to con�rm the �ndings. If necessary, we would

additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check

items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

� Basic Coding Bugs: We �rst statically analyze given smart contracts with our proprietary static

code analyzer for known coding bugs, and then manually verify (reject or con�rm) all the issues

found by our tool.

� Semantic Consistency Checks: We then manually check the logic of implemented smart con-

tracts and compare with the description in the white paper.

� Advanced DeFi Scrutiny: We further review business logics, examine system operations, and

place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

� Additional Recommendations: We also provide additional suggestions regarding the coding and

development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identi�ed, we categorize the �ndings with Common Weakness

Enumeration (CWE-699) [5], which is a community-developed list of software weakness types to

better delineate and organize weaknesses around concepts frequently encountered in software devel-

opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use

the CWE categories in Table 1.4 to classify our �ndings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software

release, and does not give any warranties on �nding all possible security issues of the given smart

contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence

of any further �ndings of security issues. As one audit-based assessment cannot be considered

comprehensive, we always recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of smart contract(s). Last but not least, this security audit

should not be used as investment advice.

7/19 PeckShield Audit Report #: 2021-003

Con�dential

Table 1.4: Common Weakness Enumeration (CWE) Classi�cations Used in This Audit

Category Summary

Con�guration Weaknesses in this category are typically introduced during
the con�guration of the software.

Data Processing Issues Weaknesses in this category are typically found in functional-
ity that processes data.

Numeric Errors Weaknesses in this category are related to improper calcula-
tion or conversion of numbers.

Security Features Weaknesses in this category are concerned with topics like
authentication, access control, con�dentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,

Return Values,

Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/19 PeckShield Audit Report #: 2021-003

Con�dential

2 | Findings

2.1 Summary

Here is a summary of our �ndings after analyzing the given source code of the Perpetual Protocol's

Staking, Rewards Vesting, and Keeper functionality. During the �rst phase of our audit, we study

the smart contract source code and run our in-house static code analyzer through the codebase. The

purpose here is to statically identify known coding bugs, and then manually verify (reject or con�rm)

issues reported by our tool. We further manually review business logics, examine system operations,

and place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

Severity # of Findings

Critical 0

High 0

Medium 0

Low 1

Informational 3

Total 4

We have so far identi�ed a list of potential issues: some of them involve subtle corner cases that might

not be previously thought of, while others refer to unusual interactions among multiple contracts.

For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or

veri�cation. After further analysis and internal discussion, we determined a few issues of varying

severities need to be brought up and paid more attention to, which are categorized in the above

table. More information can be found in the next subsection, and the detailed discussions of each of

them are in Section 3.

9/19 PeckShield Audit Report #: 2021-003

Con�dential

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be

improved by resolving the identi�ed issues (shown in Table 2.1), including 1 low-severity vulnerability,

and 3 informational recommendations.

Table 2.1: Key Staking, Rewards Vesting, and Keeper Audit Findings

ID Severity Title Category Status

PVE-001 Low Missed Access Control in KeeperReward L1/L2 Business Logic Con�rmed

PVE-002 Info. Unused Mapping in PerpRewardVesting Business Logic Fixed

PVE-003 Info. Optimized TmpRewardPoolL1::removeFeeRewardPool() Coding Practices Fixed

PVE-004 Info. Inaccurate Event Emitted in StakedPerpToken::stake() Business Logic Fixed

Besides recommending speci�c countermeasures to mitigate these issues, we also emphasize that

it is always important to develop necessary risk-control mechanisms and make contingency plans,

which may need to be exercised before the mainnet deployment. The risk-control mechanisms need

to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to

Section 3 for details.

10/19 PeckShield Audit Report #: 2021-003

Con�dential

3 | Detailed Results

3.1 Missed Access Control in KeeperReward L1/L2

� ID: PVE-001

� Severity: Low

� Likelihood: Medium

� Impact: Low

� Target: KeeperRewardL1.sol, KeeperRewardL2

.sol

� Category: Business Logic [4]

� CWE subcategory: CWE-841 [2]

Description

For the purpose of incentivizing keepers to help the system to update states (e.g., prices of as-

sets), KeeperRewardL1/L2 contracts wrap the functions to be invoked by keepers, set rewards for each

function, and send keepers rewardToken after each successful keeper call. As shown in the code

snippet below, the wrapped function is called in line 21 and the rewards are sent to the caller of

updatePriceFeed() in postTaskAction() (line 22).
17 f unc t i on upda tePr i c eFeed (bytes32 _priceFeedKey) ex te rna l {

18 bytes4 s e l e c t o r = Cha i n l i n kL1 . updateLatestRoundData . s e l e c t o r ;

19 Task In fo memory t a s k = ge tTa sk I n f o (s e l e c t o r) ;

21 Cha i n l i n kL1 (t a s k . con t r a c tAdd r) . updateLatestRoundData (_pr iceFeedKey) ;

22 pos tTaskAct ion (s e l e c t o r) ;

23 }

Listing 3.1: KeeperRewardL1.sol

However, as we look into the wrapped function, ChainlinkL1.updateLatestRoundData(), we �nd

out that the function is also an external function with no access control. It means if a keeper invokes

the wrapped function directly, there's no reward, which makes the state updater have two entries:

one with rewards, one without rewards. The same issue is also applicable to KeeperRewardL2 and

ClearingHouse.payFunding().

96 f unc t i on updateLatestRoundData (bytes32 _priceFeedKey) ex te rna l {

97 Agg r e g a t o rV3 I n t e r f a c e agg r e ga t o r = ge tAgg r ega to r (_pr iceFeedKey) ;

11/19 PeckShield Audit Report #: 2021-003

Con�dential

98 requ i reNonEmptyAddress (address (a gg r e ga t o r)) ;

100 (uint80 roundId , int256 p r i c e , , uint256 timestamp ,) = agg r e ga t o r .

l a t e s tRoundData () ;

101 r equ i r e (timestamp > prevTimestampMap [_pr iceFeedKey] , "incorrect timestamp") ;

102 r equ i r e (p r i c e >= 0 , "negative answer") ;

104 u int8 de c ima l s = agg r e ga t o r . d e c ima l s () ;

106 Decimal . d ec ima l memory d e c ima lP r i c e = Decimal . dec ima l (fo rmatDec ima l s (uint256 (

p r i c e) , d e c ima l s)) ;

107 bytes32 message Id =

108 r o o tB r i d g e . upda tePr i c eFeed (p r i c eFeedL2Addre s s , _priceFeedKey , d e c ima lP r i c e ,

timestamp , r ound Id) ;

109 emit Pr i ceUpdateMessage IdSent (message Id) ;

110 emit Pr iceUpdated (roundId , d e c ima lP r i c e . t oU in t () , timestamp) ;

112 prevTimestampMap [_pr iceFeedKey] = timestamp ;

113 }

Listing 3.2: ChainlinkL1. sol

Recommendation Only allow the KeeperRewardL1/L2 contracts to call the underlying func-

tions.

Status As per discussion with the team, they decide to leave it as is to make the state updater

functions permission-less.

3.2 Unused Mapping in PerpRewardVesting

� ID: PVE-002

� Severity: Informational

� Likelihood: N/A

� Impact: N/A

� Target: PerpRewardVesting

� Category: Business Logic [4]

� CWE subcategory: CWE-841 [2]

Description

In the PerpRewardVesting contract, the claimWeek() function allows the caller to claim the vested

assets of a speci�c _week. As an enhancement based on Balancer's MerkleRedeem contract, a vesting

delay (i.e., vestingPeriodMap[_week]) is used to prevent the caller from claiming the assets right after

those tokens are vested.

50 f unc t i on claimWeek (

51 address _account ,

52 uint256 _week ,

12/19 PeckShield Audit Report #: 2021-003

Con�dential

53 uint256 _cla imedBalance ,

54 bytes32 [] memory _merkleProof

55) pub l i c v i r t u a l o v e r r i d e {

56 //

57 // claimableTimestamp now

58 // +----------------+

59 // vesting period

60 // ---------+------+---+------------+--

61 //

62 // merkleRootTimestampMap[weeks+1] �> non-claimable//

64 // merkleRootTimestampMap[weeks] --> claimable

65 //

66 uint256 c la imab leTimestamp = _blockTimestamp () . sub (ve s t i ngPe r i odMap [_week]) ;

67 r equ i r e (c la imab leTimestamp >= merkleRootTimestampMap [_week] , "Claiming is not yet

available") ;

68 super . claimWeek (_account , _week , _cla imedBalance , _merk leProof) ;

69 }

Listing 3.3: PerpRewardVesting.sol

As we look into the details of setting the vesting delay, we identify that the vestingPeriodMap

[_week] is set to a constant value, defaultVestingPeriod. Therefore, the vestingPeriodMap[_week]

mapping is not necessary here. The claimableTimestamp in claimWeek() could be simply derived by

_blockTimestamp().sub(defaultVestingPeriod).

71 f unc t i on s e e dA l l o c a t i o n s (

72 uint256 _week ,

73 bytes32 _merkleRoot ,

74 uint256 _to t a l A l l o c a t i o n

75) pub l i c v i r t u a l o v e r r i d e onlyOwner {

76 super . s e e dA l l o c a t i o n s (_week , _merkleRoot , _ t o t a l A l l o c a t i o n) ;

77 merkleRootTimestampMap [_week] = _blockTimestamp () ;

78 merk l eRoo t I ndexe s . push (_week) ;

79 ve s t i ngPe r i odMap [_week] = d e f a u l t V e s t i n gP e r i o d ;

80 }

Listing 3.4: PerpRewardVesting.sol

Recommendation Use constant vesting period in claimWeek() and remove vestingPeriodMap.

Status This issue has been addressed in this commit: 7766c9b.

13/19 PeckShield Audit Report #: 2021-003

Con�dential

3.3 Optimized TmpRewardPoolL1::removeFeeRewardPool()

� ID: PVE-003

� Severity: Informational

� Likelihood: N/A

� Impact: N/A

� Target: TmpRewardPoolL1, TollPool

� Category: Coding Practices [3]

� CWE subcategory: CWE-1041 [1]

Description

In TmpRewardPoolL1 contract, the removeFeeRewardPool() function allows the owner to remove a _token

from the feeTokens[] array. While reviewing the implementation, we identify a redundant array traver-

sal which could be optimized. Speci�cally, as shown in the code snippet below, isFeeTokenExisted()

is called in line 75 to ensure that the _token is existed.

73 f unc t i on removeFeeRewardPool (IERC20 _token) ex te rna l onlyOwner {

74 r equ i r e (address (_token) != address (0) , "invalid input") ;

75 r equ i r e (i sF e eTokenEx i s t ed (_token) , "token does not exist") ;

77 uint256 l engthOfFeeTokens = getFeeTokenLength () ;

78 f o r (uint256 i ; i < lengthOfFeeTokens ; i++) {

79 i f (_token == feeTokens [i]) {

80 IR ewa rdRec i p i e n t feeRewardPoo l = feeRewardPoolMap [feeTokens [i]] ;

81 i f (i != lengthOfFeeTokens = 1) {

82 f eeTokens [i] = feeTokens [l engthOfFeeTokens = 1] ;

83 }

85 f eeTokens . pop () ;

86 de le te feeRewardPoolMap [_token] ;

88 emit FeeRewardPoolRemoved (address (_token) , address (feeRewardPoo l)) ;

89 break ;

90 }

91 }

92 }

Listing 3.5: TmpRewardPoolL1.sol

As shown in the code snippet below, the feeTokens[] array is walked through to �nd the _token.

However, in line 78, the removeFeeRewardPool() walks through the array again and removes the _token

from the array when i reaches the position of the _token. Since the second array traversal is necessary,

we could simply skip the �rst one and revert() when the second for-loop cannot �nd the _token.

This could be done by setting a found �ag whenever _token == feeTokens[i] and require(found) in

the end of the function.

97 f unc t i on i s F e eTokenEx i s t ed (IERC20 _token) pub l i c view re tu rn s (bool) {

98 f o r (uint256 i ; i < feeTokens . l ength ; i++) {

14/19 PeckShield Audit Report #: 2021-003

Con�dential

99 i f (_token == feeTokens [i]) re tu rn t rue ;

100 }

101 re tu rn f a l s e ;

102 }

Listing 3.6: BaseBridge.sol

Same theory applies to removeFeeToken() function in the TollPool contract.

Recommendation Remove the redundant isFeeTokenExisted() call and revise the removeFeeRewardPool

() function as follows:

73 f unc t i on removeFeeRewardPool (IERC20 _token) ex te rna l onlyOwner {

74 r equ i r e (address (_token) != address (0) , "invalid input") ;

75 bool found ;

76 uint256 l engthOfFeeTokens = getFeeTokenLength () ;

77 f o r (uint256 i ; i < lengthOfFeeTokens ; i++) {

78 i f (_token == feeTokens [i]) {

79 found = t rue ;

80 IR ewa rdRec i p i e n t feeRewardPoo l = feeRewardPoolMap [feeTokens [i]] ;

81 i f (i != lengthOfFeeTokens = 1) {

82 f eeTokens [i] = feeTokens [l engthOfFeeTokens = 1] ;

83 }

85 f eeTokens . pop () ;

86 de le te feeRewardPoolMap [_token] ;

88 emit FeeRewardPoolRemoved (address (_token) , address (feeRewardPoo l)) ;

89 break ;

90 }

91 }

92 r equ i r e (found , "token does not exist") ;

93 }

Listing 3.7: TmpRewardPoolL1.sol

Status This issue has been addressed in this commit: 589bdd5.

15/19 PeckShield Audit Report #: 2021-003

Con�dential

3.4 Inaccurate Event Emitted in StakedPerpToken::stake()

� ID: PVE-004

� Severity: Informational

� Likelihood: N/A

� Impact: N/A

� Target: StakedPerpToken.sol

� Category: Business Logic [4]

� CWE subcategory: CWE-841 [2]

Description

In the StakedPerpToken contract, users are allowed to stake() an arbitrary _amount of perpToken. As

a special design, the pending balance of the previous withdrawal (if any) would be re-staked in

the stake() call. However, while reviewing the implementation, we identify that the Staked() event

emitted in the end of the stake() has an inaccurate amount due to the re-staking.

81 f unc t i on s t a k e (Decimal . d ec ima l c a l l d a t a _amount) ex te rna l {

82 requireNonZeroAmount (_amount) ;

83 address msgSender = _msgSender () ;

85 // copy calldata amount to memory

86 Decimal . d ec ima l memory amount = _amount ;

88 // stake after unstake is allowed , and the states mutated by unstake () will

being undo

89 i f (s take rWi thdrawPend ingBa lance [msgSender] . t oU in t () != 0) {

90 amount = amount . addD(s take rWi thdrawPend ingBa lance [msgSender]) ;

91 de le te s take rWi thdrawPend ingBa lance [msgSender] ;

92 de le te s take rCoo ldown [msgSender] ;

93 }

95 // if staking after unstaking , the amount to be transferred does not need to be

updated

96 _trans fe rFrom (perpToken , msgSender , address (t h i s) , _amount) ;

97 _mint (msgSender , amount) ;

99 // Have to update balance first

100 f o r (uint256 i ; i < stakeModu le s . l ength ; i++) {

101 s takeModu le s [i] . n o t i f y S t a k e (msgSender) ;

102 }

104 emit Staked (msgSender , _amount . t oU in t ()) ;

105 }

Listing 3.8: StakedPerpToken.sol

Speci�cally, the Staked() event is emitted with _amount which is the amount of perpToken trans-

ferred into the StakedPerpToken contract. It means the stakerWithdrawPendingBalance[msgSender] (if

16/19 PeckShield Audit Report #: 2021-003

Con�dential

it's greater than 0) amount of perpToken are not staked but the corresponding sPERP tokens are minted

(line 97). We suggest to �x the event emitted to make maintenance easier.

Recommendation Emit Staked(msgSender, amount.toUint()) in the end of stake().

Status This issue has been addressed by emitting Staked(msgSender, amount.toUint()) in the

end of stake() in this commit: 244�96.

17/19 PeckShield Audit Report #: 2021-003

Con�dential

4 | Conclusion

In this audit, we have analyzed the Perpetual Protocol's new functionality on Staking, Rewards

Vesting, and Keeper. The system presents a unique o�ering of perpetual contract trading of various

digital assets and we are impressed by the design and implementation. The current code base is well

organized and those identi�ed issues are promptly con�rmed and �xed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting

stage of development. To improve this report, we greatly appreciate any constructive feedbacks or

suggestions, on our methodology, audit �ndings, or potential gaps in scope/coverage.

18/19 PeckShield Audit Report #: 2021-003

Con�dential

References

[1] MITRE. CWE-1041: Use of Redundant Code. https://cwe.mitre.org/data/de�nitions/1041.

html.

[2] MITRE. CWE-841: Improper Enforcement of Behavioral Work�ow. https://cwe.mitre.org/data/

de�nitions/841.html.

[3] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/de�nitions/

1006.html.

[4] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/de�nitions/840.

html.

[5] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/de�nitions/699.html.

[6] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[7] PeckShield. PeckShield Inc. https://www.peckshield.com.

19/19 PeckShield Audit Report #: 2021-003

https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Perpetual Protocol
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Missed Access Control in KeeperReward L1/L2
	Unused Mapping in PerpRewardVesting
	Optimized TmpRewardPoolL1::removeFeeRewardPool()
	Inaccurate Event Emitted in StakedPerpToken::stake()

	Conclusion
	References

