Public

e PeckShield

SMART CONTRACT AUDIT REPORT

for

INSTADAPP LABS

Prepared By: Shuxiao Wang

PeckShield
March 16, 2021

1/15 PeckShield Audit Report #: 2021-060


sxwang@peckshield.com

Public

Document Properties

Client
Title
Target

Version
Author
Auditors

InstaDApp Labs

Smart Contract Audit Report

DSAv2

1.0

Xuxian Jiang

Huaguo Shi, Xuxian Jiang

Reviewed by [RE{NEDN

AVSI oA Xuxian Jiang

Classification B

Version Info

Version Date Author(s) = Description

1.0 March 16, 2021 | Xuxian Jiang | Final Release

0.2 March 12, 2021 | Xuxian Jiang | Additional Findings #1

0.1 March 9, 2021 | Xuxian Jiang | Initial Draft
Contact

For more information about this document and its contents, please contact PeckShield Inc.

Shuxiao Wang

+86 173 6454 5338

contact@peckshield.com

2/15

PeckShield Audit Report #: 2021-060



Public

Contents
1 Introduction 4
1.1 About DSAV2 . . . . e 4
1.2 About PeckShield . . . . . . . . . 5
1.3 Methodology . . . . . . . . . 5
1.4 Disclaimer . . . . . . 7
2 Findings 9
2.1 Summary . ..o 9
22 Key Findings . . . . . . .. 10
3 Detailed Results 11
3.1 Improved Sanity Checks Of Function Parameters . . . . . . . . . ... .. ... ... 11
3.2 Management of Privileged Master Account . . . . . . . . ... ... ... ... ... 12
3.3 Other Suggestions . . . . . . . . . 13
4 Conclusion 14
References 15

3/15 PeckShield Audit Report #: 2021-060



Public

1 Introduction

Given the opportunity to review the design document and related smart contract source code of the
InstaDApp DeFi Smart Accounts version 2 (or DSAv2), we outline in the report our systematic approach
to evaluate potential security issues in the smart contract implementation, expose possible semantic
inconsistencies between smart contract code and design document, and provide additional suggestions
or recommendations for improvement. Our results show that the given version of smart contracts can
be further improved due to the presence of several issues related to either security or performance.

This document outlines our audit results.

1.1 About DSAV2

InstaDApp is a popular DeFi portal that aggregates the major protocols using a smart wallet layer and
bridge contracts, making it easy for users to make the best decisions about assets and execute pre-
viously complex transactions seamlessly. This upgrade to DsAv2 provides a number of enhancements,
including a generic extensible implementation framework, a user-facing account proxy, as well as new
connectors design.

The basic information of DSAV2 is as follows:

Table 1.1: Basic Information of DSAv2

Item  Description

Issuer | InstaDApp Labs
Website | https://instadapp.io/
Type | Ethereum Smart Contract
Platform | Solidity
Audit Method | Whitebox
Latest Audit Report | March 16, 2021

In the following, we show the Git repository of reviewed files and the commit hash value used in

this audit:

4/15 PeckShield Audit Report #: 2021-060



Public

e https://github.com/InstaDApp/dsa-contracts (83d3f9de)

1.2 About PeckShield

PeckShield Inc. [7] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

High Medium
i3]
of Medium Medium
E

Low Medium

Medium

High Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [6]:

e Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

e Impact measures the technical loss and business damage of a successful attack;

e Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the

contract is considered safe regarding the check item. For any discovered issue, we might further

5/15 PeckShield Audit Report #: 2021-060


https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category

Basic Coding Bugs

Check Item |
Constructor Mismatch

Ownership Takeover

Redundant Fallback Function

Overflows & Underflows

Reentrancy

Money-Giving Bug

Blackhole

Unauthorized Self-Destruct

Revert DoS

Unchecked External Call

Gasless Send

Send Instead Of Transfer

Costly Loop

(Unsafe) Use Of Untrusted Libraries

(Unsafe) Use Of Predictable Variables

Transaction Ordering Dependence

Deprecated Uses

Semantic Consistency Checks

Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review

Functionality Checks

Authentication Management

Access Control & Authorization

Oracle Security

Digital Asset Escrow

Kill-Switch Mechanism

Operation Trails & Event Generation

ERC20 Idiosyncrasies Handling

Frontend-Contract Integration

Deployment Consistency

Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array

Using Fixed Compiler Version

Making Visibility Level Explicit

Making Type Inference Explicit

Adhering To Function Declaration Strictly

Following Other Best Practices

6/15

PeckShield Audit Report #: 2021-060



Public

deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

e Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static

code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues

found by our tool.

e Semantic Consistency Checks: We then manually check the logic of implemented smart con-

tracts and compare with the description in the white paper.

e Advanced DeFi Scrutiny: We further review business logics, examine system operations, and

place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

e Additional Recommendations: We also provide additional suggestions regarding the coding and

development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [5], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with

respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit

should not be used as investment advice.

7/15 PeckShield Audit Report #: 2021-060



Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category

Configuration

Summary

Weaknesses in this category are typically introduced during

the configuration of the software.

Data Processing Issues

Weaknesses in this category are typically found in functional-
ity that processes data.

Numeric Errors

Weaknesses in this category are related to improper calcula-
tion or conversion of numbers.

Security Features

Weaknesses in this category are concerned with topics like
authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State

Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management

Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues

Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics

Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup

Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters

Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues

Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices

Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/15

PeckShield Audit Report #: 2021-060




Public

2 Findings

2.1 Summary

Here is a summary of our findings after analyzing the DSAv2 implementation. During the first phase
of our audit, we study the smart contract source code and run our in-house static code analyzer
through the codebase. The purpose here is to statically identify known coding bugs, and then
manually verify (reject or confirm) issues reported by our tool. We further manually review business
logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover possible
pitfalls and/or bugs.

Severity ‘ # of Findings
Critical 0
High

Medium

Low

Informational
Total

N Ol |+

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions

of each of them are in Section 3.

9/15 PeckShield Audit Report #: 2021-060



Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity

vulnerability, and 1 low-severity vulnerability.

Table 2.1: Key Audit Findings

ID Severity Title | Category SEEN
PVE-001 Low Improved Sanity Checks Of Function Parameters | Coding Practices | Confirmed

PVE-002 | Medium | Management of Privileged Master Account Security Features | Mitigated

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need

to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to

Section 3 for details.

10/15 PeckShield Audit Report #: 2021-060



70
71
72
73
74
75

76
7

78

79

80

81
82

Public

3 Detailed Results

3.1 Improved Sanity Checks Of Function Parameters

e |ID: PVE-001 e Target: InstaConnectorsV2

e Severity: Low e Category: Coding Practices [4]

o Likelihood: Low e CWE subcategory: CWE-1126 [1]
e Impact: Low

Description

DeFi protocols typically have a number of system-wide settings or parameters that can be dynamically
configured on demand. The DsAv2 smart accounts are no exception. Specifically, if we examine the
InstaConnectorsV2 contract, it has defined a number of protocol-wide configurations, e.g., chief and
connectors. In the following, we show a specific routine updateConnectors() that is designed to update
connectors that provide the functionalities or features to enhance smart accounts.

/ * %
* @dev Update Connectors
* @param _connectorNames Array of Connector Names.
* Q@param _connectors Array of Connector Address.
*/
function updateConnectors(string[] calldata _connectorNames, address[] calldata
__connectors) external isChief {
for (uint i = 0; i < _connectors.length; i++4) {
require (connectors|[ connectorNames[i]] != address(0), "addConnectors:
_connectorName not added to update");
require( _connectors[i] != address(0), "addConnectors: _connector address is
not vaild");
Connectorlnterface( connectors[i]).name(); // Checking if connector has
function name ()
emit LogConnectorUpdated( connectorNames[i], connectors|[ connectorNames[i]],
__connectors[i]);
connectors | connectorNames[i]] = connectors[i];

11/15 PeckShield Audit Report #: 2021-060



83

54
55
56
57
58
59

Public

Listing 3.1: InstaConnectorsV2:: updateConnectors()

Our result shows the update logic on the above logic can be improved by applying more rigorous
sanity checks. Specifically, this routine essentially iterates the given connectors and updates the
internal connector mapping (line 81). Within the routine, it properly validates the given arguments
in ensuring the validity of each connector. However, it misses the validation on the length of the
given arguments, i.e., require(_connectors.length == _connectors.length, "updateConnectors: not

same length").

Recommendation Properly validate the given two arguments to updateConnectors() have the

same length.

Status The issue has been confirmed.

3.2 Management of Privileged Master Account

e ID: PVE-002 e Target: Multiple Contracts

e Severity: Medium e Category: Security Features [3]
e Likelihood: Medium e CWE subcategory: CWE-287 [2]
e Impact: Medium

Description

Following the same design as the first version, DsAv2 has a privileged account master that plays a
critical role in governing and regulating the system-wide operations (e.g., connector registration,
implementation customization, and parameter setting). The configured connectors also have the
privilege to control or govern the flow of user assets managed in these smart accounts.

With great privilege comes great responsibility. Our analysis shows that the master account is
indeed privileged. To elaborate, we show below one guarded function addConnectors(). As the name
indicates, this function allows for the additions of new connectors. These connectors are allowed to
execute the code in the context of users’ smart accounts (via delegatecall()), effectively accessing
and managing any asserts held in these smart accounts.

/ % *x

* @dev Add Connectors

* Q@param _connectorNames Array of Connector Names.

* Q@param _connectors Array of Connector Address.

*/

function addConnectors(string[] calldata _connectorNames, address[] calldata
__connectors) external isChief {

12/15 PeckShield Audit Report #: 2021-060



60

61
62

63
64
65
66

67
68

Public

require( _connectors.length = _connectors.length, "addConnectors: not same
length");
for (uint i = 0; i < _connectors.length; i++) {
require (connectors|[ connectorNames[i]] = address(0), "addConnectors:
_connectorName added already");
require( connectors[i] != address(0), "addConnectors: _connectors address
not vaild");
Connectorlnterface( connectors[i]).name(); // Checking if connector has
function name ()
connectors|[ connectorNames[i]] = connectors[i];
emit LogConnectorAdded( connectorNames[i], connectors[i]);

Listing 3.2: InstaConnectorsV2::addConnectors()

We emphasize that this privileged account is necessary and this account should not be managed
by a normal E0A account. In fact, it is better governed by a pao-like structure. The discussion with
the team has confirmed that the master account will be managed by DAO. We point out that a
compromised master account would allow the attacker to add a malicious connector to steal funds in

these smart accounts.

Recommendation Promptly transfer the master privilege to the intended pao-like governance
contract. Any changes can also be mitigated with a timelock-based mechanism. Moreover, activate
the normal on-chain community-based governance life-cycle and ensure the intended trustless nature
and high-quality distributed governance.

Status This issue has been mitigated with the planned DAO-based governance to regulate the

master privileges.

3.3 Other Suggestions

Due to the fact that compiler upgrades might bring unexpected compatibility or inter-version con-
sistencies, it is always suggested to use fixed compiler versions whenever possible. As an example,
we highly encourage to explicitly indicate the Solidity compiler version, e.g., pragma solidity 0.7.0;
instead of pragma solidity ~0.7.0;.

Moreover, we strongly suggest not to use experimental Solidity features or third-party unaudited
libraries. If necessary, refactor current code base to only use stable features or trusted libraries. In
case there is an absolute need of leveraging experimental features or integrating external libraries,

make necessary contingency plans.

13/15 PeckShield Audit Report #: 2021-060



Public

4 Conclusion

In this audit, we have analyzed the DSAv2 documentation and implementation. The audited system
does involve various intricacies in both design and implementation. The current code base is well
organized and those identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in

scope/coverage.

14/15 PeckShield Audit Report #: 2021-060



Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.
org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/
254.html.

[4] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/
1006.html.

[5] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[6] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP _Risk Rating

Methodology.

[7] PeckShield. PeckShield Inc. https://www.peckshield.com.

15/15 PeckShield Audit Report #: 2021-060


https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About DSAv2
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improved Sanity Checks Of Function Parameters
	Management of Privileged Master Account
	Other Suggestions

	Conclusion
	References

